Download the full
version of the article (in PDF format)
O.B. MEL’NYK, A.B. SHEVCHENKO, and O.V. OLIINYK
Thermodynamic Modelling of Structural
Transformations in High-Entropy NiTiCoCuZrHf Alloys
1001–1011 (2024)
PACS numbers: 05.10.Ln, 05.70.Ce, 65.40.De, 65.40.gd, 81.30.Bx, 81.30.Kf, 82.60.-s
The compositions for high-entropy alloys containing Ni, Ti, Co, Cu, Zr, Hf elements are
considered using a thermodynamic approach within the framework of the semi-empirical Miedema’s theory. The
compositions of alloys with the minimum Gibbs free energy, which will be in the form of single-phase stable
solid solutions, are calculated. As found, the single-phase stable solid solutions will differ significantly
from the equimolar stoichiometry, and the equiatomic high-entropy alloys will be multiphase. The parameters
of martensitic transformations are estimated, and their correlation with experimental data is revealed. The
obtained results are used to interpret the elastocaloric effect in the studied systems
KEY WORDS: high-entropy alloys, solid solution, Gibbs energy, martensitic transformations
DOI: https://doi.org/10.15407/nnn.22.04.1001
REFERENCES
- L. Manosa, A. Planes, and M. Acet, Journal of Materials Chemistry A, 1, Iss. 16: 4925 (2013); https://doi.org/10.1039/C3TA01289A
- H. Ossmer, F. Lambrecht, M. G?ltig, C. Chluba, E. Quandt, and M. Kohl, Acta Mater., 81: 9 (2014); https://doi.org/10.1016/j.actamat.2014.08.006
- X. Moya, S. Kar-Narayan, and N. D. Mathur, Nature Mater., 13: 439 (2014); https://doi.org/10.1038/nmat3951
- B.-C. Chang, J. A. Shaw, and M. A. Iadicola, Continuum Mech. Thermodyn., 18: 83 (2006); https://doi.org/10.1007/s00161-006-0022-9
- H. Ossmer, C. Chluba, M. Gueltig, E. Quandt, and M. Kohl, Shape Memory and Superelasticity, 1: 142 (2015); https://doi.org/10.1007/s40830-015-0014-3
- J. Frenzel, A. Wieczorek, I. Opahle, B. Maas, R. Drautz, and G. Eggeler, Acta Mater., 90: 213 (2015); https://doi.org/10.1016/j.actamat.2015.02.029
- G. S. Firstov, T. A. Kosorukova, Yu. N. Koval, and P. A. Verhovlyuk, Shape Memory and Superelasticity, 1: 400 (2015); https://doi.org/10.1007/s40830-015-0039-7
- G. S. Firstov, T. A. Kosorukova, Yu. N. Koval, and V. V. Odnosum, Materials Today: Proceedings, 2, Suppl. 3: S499 (2015); http://dx.doi.org/10.1016/j.matpr.2015.07.335
- F. R. Boer, R. Boom, W. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys (Amsterdam: North-Holland: 1988).
- H. Bakker, Enthalpies in Alloys: Miedema’s Semi-Empirical Model (Switzerland: Trans Tech. Publications: 1998).
- A. Takeuchi and A. Inoue, Mater. Trans., 41, Iss. 11: 1372 (2000); https://doi.org/10.2320/matertrans1989.41.1372
- A. Takeuchi and A. Inoue, Mater. Trans., 46: 2817 (2005); https://doi.org/10.2320/matertrans.46.2817
- A. B. Melnick and V. K. Soolshenko, J. Alloys Compd., 694: 223 (2017); https://doi.org/10.1016/j.jallcom.2016.09.189
- A. K. Niessen and A. R. Miedema, Bunsenges. Ber. Phys. Chem., 87: 717 (1983); http://dx.doi.org/10.1002/bbpc.19830870903
- WebElements Periodic Table: the Periodic Table on the Web; http://www.webelements.com
- X. Zhu, X. Zhang, X. Qian, and M. Imran, J. Alloys Compd., 792: 780 (2019); http://dx.doi.org/10.1016/j.jallcom.2019.04.087
|