Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

O.B. MEL’NYK, A.B. SHEVCHENKO, and O.V. OLIINYK

Thermodynamic Modelling of Structural Transformations in High-Entropy NiTiCoCuZrHf Alloys
1001–1011 (2024)

PACS numbers: 05.10.Ln, 05.70.Ce, 65.40.De, 65.40.gd, 81.30.Bx, 81.30.Kf, 82.60.-s

The compositions for high-entropy alloys containing Ni, Ti, Co, Cu, Zr, Hf elements are considered using a thermodynamic approach within the framework of the semi-empirical Miedema’s theory. The compositions of alloys with the minimum Gibbs free energy, which will be in the form of single-phase stable solid solutions, are calculated. As found, the single-phase stable solid solutions will differ significantly from the equimolar stoichiometry, and the equiatomic high-entropy alloys will be multiphase. The parameters of martensitic transformations are estimated, and their correlation with experimental data is revealed. The obtained results are used to interpret the elastocaloric effect in the studied systems

KEY WORDS: high-entropy alloys, solid solution, Gibbs energy, martensitic transformations

DOI:  https://doi.org/10.15407/nnn.22.04.1001

REFERENCES
  1. L. Manosa, A. Planes, and M. Acet, Journal of Materials Chemistry A, 1, Iss. 16: 4925 (2013); https://doi.org/10.1039/C3TA01289A
  2. H. Ossmer, F. Lambrecht, M. G?ltig, C. Chluba, E. Quandt, and M. Kohl, Acta Mater., 81: 9 (2014); https://doi.org/10.1016/j.actamat.2014.08.006
  3. X. Moya, S. Kar-Narayan, and N. D. Mathur, Nature Mater., 13: 439 (2014); https://doi.org/10.1038/nmat3951
  4. B.-C. Chang, J. A. Shaw, and M. A. Iadicola, Continuum Mech. Thermodyn., 18: 83 (2006); https://doi.org/10.1007/s00161-006-0022-9
  5. H. Ossmer, C. Chluba, M. Gueltig, E. Quandt, and M. Kohl, Shape Memory and Superelasticity, 1: 142 (2015); https://doi.org/10.1007/s40830-015-0014-3
  6. J. Frenzel, A. Wieczorek, I. Opahle, B. Maas, R. Drautz, and G. Eggeler, Acta Mater., 90: 213 (2015); https://doi.org/10.1016/j.actamat.2015.02.029
  7. G. S. Firstov, T. A. Kosorukova, Yu. N. Koval, and P. A. Verhovlyuk, Shape Memory and Superelasticity, 1: 400 (2015); https://doi.org/10.1007/s40830-015-0039-7
  8. G. S. Firstov, T. A. Kosorukova, Yu. N. Koval, and V. V. Odnosum, Materials Today: Proceedings, 2, Suppl. 3: S499 (2015); http://dx.doi.org/10.1016/j.matpr.2015.07.335
  9. F. R. Boer, R. Boom, W. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals: Transition Metal Alloys (Amsterdam: North-Holland: 1988).
  10. H. Bakker, Enthalpies in Alloys: Miedema’s Semi-Empirical Model (Switzerland: Trans Tech. Publications: 1998).
  11. A. Takeuchi and A. Inoue, Mater. Trans., 41, Iss. 11: 1372 (2000); https://doi.org/10.2320/matertrans1989.41.1372
  12. A. Takeuchi and A. Inoue, Mater. Trans., 46: 2817 (2005); https://doi.org/10.2320/matertrans.46.2817
  13. A. B. Melnick and V. K. Soolshenko, J. Alloys Compd., 694: 223 (2017); https://doi.org/10.1016/j.jallcom.2016.09.189
  14. A. K. Niessen and A. R. Miedema, Bunsenges. Ber. Phys. Chem., 87: 717 (1983); http://dx.doi.org/10.1002/bbpc.19830870903
  15. WebElements Periodic Table: the Periodic Table on the Web; http://www.webelements.com
  16. X. Zhu, X. Zhang, X. Qian, and M. Imran, J. Alloys Compd., 792: 780 (2019); http://dx.doi.org/10.1016/j.jallcom.2019.04.087
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement