Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

M.I. GRECHANYUK, O.V. MATSENKO, V.O. SHAPOVALOV, V.G. GRECHANYUK, I.M. GRECHANYUK, and A.V. KOZYREV

The Structure of Nanolayered Composite Materials of the Cu–Fe System Obtained by the Electron-Beam Evaporation–Condensation Method
973–984 (2024)

PACS numbers: 61.72.Ff, 64.70.dg, 64.70.Hz, 81.05.Bx, 81.10.Bk, 81.15.Jj, 81.15.Kk

The condensed composite materials of Cu–Fe containing 2.66–84.6 wt.% of iron are studied by optical and scanning electron microscopy, quantitative metallography, and x-ray spectral analysis of microscopic volumes. Materials with a porosity of 1.6% are fabricated by the electron-beam high-speed evaporation–condensation method in a vacuum on a steel substrate with a CaF2 separation layer. The peculiarities and singularities of structure formation of these condensed materials, which are governed by the processes of self-organization under the conditions of formation and precipitation of supersaturated solutions, are investigated. The influence of the content of the second component (iron) on the structure of the matrix phase of the copper-based alloy is also studied. As revealed, these processes are related with the formation of a columnar and layered structure of the material. As noticed during the study, the roughness of the substrate and the heterogeneity of the structure of the separation CaF2 layer have a noticeable effect on the structure and properties of the obtained samples. This is due to the layered nature of the condensed material and the high heredity of structural elements in the process of formation of these layers. As found as a result of structural studies of samples of condensed material, it is aggregated from columns (or fibres), which in turn consist of particles of spherical, lentils-like and other shapes. This indicates that the condensation of the material occurs in the liquid phase after the vapour-to-liquid transformation. Analysis of the size distribution of the particles, which form the surface of the condensed material, exposes the predominant role of coalescence processes in their growth. Studies in a wide concentration range of the two components of the Cu–Fe system show that a noticeable microlayering, which increases the mechanical properties of the material, occurs at an iron content of more than 6 wt.%. With a small amount of iron in the material, the particles of the dispersed phase, which precipitate, form conglomerates of no more than 2.5 µm, and they themselves do not exceed 0.1 µm. The macrostructure of the surface changes with increasing of iron content: the particles become spheroidized that contributes to the formation of the columnar structure of the material. In addition, there are signs of formation of a structureless film

KEY WORDS: composite material, electron-beam evaporation, electron-beam condensation, evaporation–condensation, layering, columnar structure, structural defects

DOI:  https://doi.org/10.15407/nnn.22.04.973

REFERENCES
  1. T. O. Prikhna, I. M. Grechanyuk, M. V. Karpets, M. I. Grechanyuk, G. A. Bagliuk, V. G. Grechanyuk, and V. A. Chornovol, Powder Metallurgy and Metal Ceramics, 61, Nos. 1–2: 70 (2022); https://doi.org/10.1007/s11106-022-00296-8
  2. T. O. Prikhna, I. M. Grechanyuk, M. V. Karpets, M. I. Grechanyuk, G. A. Bagliuk, V. G. Grechanyuk, and O. V. Khomenko, Powder Metallurgy and Metal Ceramics, 61, Nos. 3–4: 230 (2022); https://doi.org/10.1007/s11106-022-00310-z
  3. I. M. Grechanyuk, M. I. Grechanyuk, G. A. Bagliuk, V. G. Grechanyuk, O. V. Khomenko, O. V. Dudnik, and V. I. Gots, Powder Metallurgy and Metal Ceramics, 61, Nos. 7–8: 459 (2022); https://doi.org/10.1007/s11106-023-00333-0
  4. M. I. Grechanyuk, I. M. Grechanyuk, Y. N. Yevterev, V. G. Grechanyuk, T. O. Prikhna, G. A. Bagliuk, V. I. Gots, O. V. Khomenko, O. V. Dudnik, and O. V. Matsenko, Powder Metallurgy and Metal Ceramics, 61, Nos. 5–6: 328 (2022); https://doi.org/10.1007/s11106-022-00320-x
  5. M. I. Grechanyuk, V. G. Grechanyuk, V. A. Shapovalov, I. M. Grechanyuk, O. V. Matsenko, A. V. Kozyrev, and V. I. Gots, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 4: 883 (2022); https://doi.org/10.15407/nnn.20.04.883
  6. M. I. Grechanyuk, V. G. Grechanyuk, A. M. Manulyk, I. M. Grechanyuk, A. V. Kozyrev, and V. I. Gots, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 4: 683 (2022); https://doi.org/10.15407/nnn.20.03.683
  7. V. G. Grechanyuk, N. I. Grechanyuk, V. O. Chornovol, A. V. Kozyrev, V. I. Gots, A. V. Matsenko, V. A. Kulichenko, T. D. Grabina, and Yu. I. Kozyreva, Metallofiz. Noveishie Tekhnol., 44, No. 7: 927 (2022); https://doi.org/10.15407/mfint.44.07.0927
  8. N. I. Grechanyuk, V. P. Konoval, V. G. Grechanyuk, G. A. Bagliuk, and D. V. Myroniuk, Powder Metallurgy and Metal Ceramics, 60, Nos. 3–4: 183 (2021); https://doi.org/10.1007/s11106-021-00226-0
  9. N. I. Grechanyuk and V. G. Grechanyuk, Powder Metallurgy and Metal Ceramics, 56, Nos. 11–12: 633 (2018); https://doi.org/10.1007/s11106-018-9938-4
  10. N. I. Grechanyuk, P. P. Kucherenko, A. G. Melnik, I. N. Grechanyuk, Yu. A. Smashnyuk, V. G. Grechanyuk, and A. Manulyk, Nanocomposites VI: Nanoscience and Nanotechnology in Advanced Composites. The Minerals, Metals & Materials Series (Eds. T. Srivatsan and M. Gupta) (Cham: Springer: 2019), pp. 105–113; https://doi.org/10.1007/978-3-030-35790-0_9
  11. R. V. Minakova, M. I. Grechanyuk, V. G. Zatovskyi, M. E. Golovkova, G. E. Kopylova, O. P. Vasilega, and D. G. Verbylo, Pro Deyaki Osoblyvosti Struktury i Vlastyvostei Tovstykh Parofaznykh Kondensativ na Osnovi Midi ta Zaliza [About Some Features of Structure and Properties of Vapour-Phase Condensate on the Copper and Iron Base], Electron Microscopy and Strength of Materials. Ser.: Physics of Materials, Structure and Properties of Materials (Kyiv: IPM of the National Academy of Sciences of Ukraine: 2010), Iss. 17, p. 37 (in Ukrainian); http://dspace.nbuv.gov.ua/handle/123456789/63513
  12. N. I. Grechanyuk, G. A. Baglyuk, P. P. Kucherenko, A. G. Melnik, I. N. Grechanyuk, V. G. Grechanyuk, and Yu. A. Smashnyuk, Powder Metallurgy and Metal Ceramics, 56, Nos. 1–2: 113 (2017); https://doi.org/10.1007/s11106-017-9878-4
  13. C. Biselli and D. G. Morris, Acta Metallurgica et Materialia, 42, No. 1: 163 (1994); https://doi.org/10.1016/0956-7151(94)90059-0
  14. J. D. Verhoeven, S. C. Chueh, and E. D. Gibson, Journal of Materials Science, 24: 1748 (1989); https://doi.org/10.1007/BF01105700
  15. Z. Wu, J. Zhang, Y. Chen, and L. Meng, Journal of Rare Earths, 27, No. 1: 87 (2009); https://doi.org/10.1016/S1002-0721(08)60197-0
  16. X. Sauvage, F. Wetscher, and P. Pareige, Acta Materialia, 53, No. 7: 2127 (2005); https://doi.org/10.1016/j.actamat.2005.01.024
  17. C. P. Wang, X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Journal of Phase Equilibria and Diffusion, 25: 320 (2004); https://doi.org/10.1007/s11669-004-0150-5
  18. N. I. Grechanyuk, R. V. Minakova, M. E. Golovkova, N. V. Minakov, D. G. Verbilo, and G. E. Kopylova, Formirovanie Metodom Ehlektronno-Luchevogo Ispareniya–Kondensatsii Cu–Fe i Cu–Ni Kompozitsionnykh Materialov i Ikh Svoistva [Formation of Cu–Fe and Cu–Ni Composite Materials by Electron-Beam Evaporation–Condensation Method and Their Properties], Electrical Contacts and Electrodes (Kyiv: IPM of the National Academy of Sciences of Ukraine: 2012) (in Russian); http://dspace.nbuv.gov.ua/handle/123456789/63598
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement