Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

Duan MANTAN, V.T. MOSIAK, D.L. PALAHECHA, K.V. KRYVENKO, S.H. PONOMARCHUK, D.O. RIEZNIK, Ya.V. ZAULYCHNYI, O.V. STEPANOV, D.S. LEONOV, M.Yu. BARABASH, and Yu.I. BOHOMOL

Structure and Properties of a Composite Material Based on Silicon Carbide Reinforced with High-Entropy Diboride at the Mesolevel
959–971 (2024)

PACS numbers: 61.72.Ff, 62.20.de, 62.20.Qp, 62.23.Pq, 81.05.Je, 81.40.Np, 81.70.Jb

Directionally solidified SiC/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 eutectic ceramics is prepared by the floating zone method based on the crucibleless zone melting of compacted powders using silicon carbide and transition-metal diboride (TiB2, ZrB2, HfB2, NbB2 and TaB2) powders as initial materials. The microstructure of as-prepared composites consists of a silicon carbide matrix uniformly reinforced on mesoscopic level by a single-phase high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 diboride. The XRD analysis of the composites confirms the presence of the following phases in their compositions: SiC and (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2. The effect of the solidification rate on the microstructural and micromechanical characteristics of the SiC/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 ceramics is revealed. As found, an increase in the solidification rate leads to a decrease in the size of the reinforcing phase and an increase in hardness and fracture toughness from 22.2 to 24.9 GPa and 3.6 to 3.9 MPa?m1/2, respectively

KEY WORDS: silicon carbide, high-entropy borides, directionally solidified eutectic composites, Vickers hardness, fracture toughness

DOI:  https://doi.org/10.15407/nnn.22.04.959

REFERENCES
  1. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, J. Am. Ceram. Soc., 90: 1347 (2010); https://doi.org/10.1111/j.1551-2916.2007.01583.x
  2. W. G. Fahrenholtz and G. E. Hilmas, Scripta Materialia, 129: 94 (2017); https://doi.org/10.1016/j.scriptamat.2016.10.018
  3. Brian C. Wyatt, Srinivasa Kartik Nemani, Gregory E. Hilmas, Elizabeth J. Opila, and Babak Anasori, Nat. Rev. Mater., 1 (2023); https://doi.org/10.1038/s41578-023-00619-0
  4. T. A. Parthasarathy, R. A. Rapp, M. Opeka, and R. J. Kerans, J. Am. Ceram. Soc., 92: 1079 (2010); https://doi.org/10.1111/j.1551-2916.2009.03031.x
  5. F. Monteverde and A. Bellosi, J. Electrochem. Soc., 150: B552 (2003); https://doi.org/10.1149/1.1618226
  6. X. T. Zhao, H. L. Wang, and R. Zhang, Key Engineering Materials, 697: 680 (2016); https://doi.org/10.4028/www.scientific.net/KEM.697.680
  7. E. Eakins, D. D. Jayaseelan, and W. E. Lee, Metall. Mater. Trans. A, 42: 878 (2011); https://doi.org/10.1007/s11661-010-0540-8
  8. H. Zhang, D. D. Jayaseelan, I. Bogomol, M. J. Reece, C. Hu, S. Grasso, and W. E. Lee, Journal of Alloys and Compounds, 785: 958 (2019); https://doi.org/10.1016/j.jallcom.2019.01.208
  9. J. Llorca and V. M. Orera, Progress in Materials Science, 51: 711 (2006); https://doi.org/10.1016/j.pmatsci.2005.10.002
  10. R. L. Ashbrook, Journal of the American Ceramic Society, 60: 428 (1977); https://doi.org/10.1111/j.1151-2916.1977.tb15527.x
  11. ². Bogomol, T. Nishimura, O. Vasylkiv, Y. Sakka, and P. Loboda, Journal of Alloys and Compounds, 485: 677 (2009); https://doi.org/10.1016/j.jallcom.2009.06.044
  12. Z. Jiamin, Z. Degui, Z. Haiwen, I. Bogomol, S. Grasso, and C. Hu, International Journal of Applied Ceramics Technology, 15: 619 (2018); https://doi.org/10.1111/ijac.12838
  13. J. Gild, Y. Zhang, T. Harrington, and S. Jiang, Sci. Rep., 6: 37946 (2016); https://doi.org/10.1038/srep37946
  14. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, Journal of the American Ceramic Society, 90: 1347 (2007); https://doi.org/10.1111/j.1551-2916.2007.01583.x
  15. G.-J. Zhang, W.-M. Guo, D.-W. Ni, and Y.-M. Kan, Journal of Physics, 176: 012041 (2009); https://doi.org/10.1088/1742-6596/176/1/012041
  16. W. Fahrenholtz and G. Hilmas, International Materials Reviews, 57: 61 (2012); https://doi.org/10.1179/1743280411Y.0000000012
  17. Ultra?High Temperature Ceramics: Materials for Extreme Environment Applications (Eds. W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, and Y. Zhou) (John Wiley & Sons: 2014); https://doi.org/10.1002/9781118700853
  18. Jin-Hao Yuan, Wei-Ming Guo, Yang Liu, Shi-Kuan Sun, Xiao-Ming Duan, De-Chang Jia, and Hua-Tay Lin, J. Am. Ceram. Soc., 105: 1629 (2022); https://doi.org/10.1111/jace.18209
  19. I. Bogomol and P. Loboda, Directionally Solidified Ceramic Eutectics for High-Temperature Applications. In: MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments (Eds. J. Low and Y. Sakka) (IGI Global: 2013), p. 303; https://doi.org/10.4018/978-1-4666-4066-5.ch010
  20. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett., 1: 13 (1982); https://doi.org/10.1007/BF00724706
  21. K. E. Petersen, Proceedings of IEEE, 70: 420 (1982); https://doi.org/10.1109/PROC.1982.12331
  22. Gang Yao, William-Yi Wang, Pei-Xuan Li, Ke Ren, Jia-Qi Lu, Xing-Yu Gao, De-Ye Lin, Jun Wang, Yi-Guang Wang, Hai-Feng Song, Zi-Kui Liu, and Jin-Shan Li, Rare Met., 42: 614 (2023); https://doi.org/10.1007/s12598-022-02152-5
  23. Iurii Bogomol, Elmira Ferkhatly, Serhii Ponomarchuk, Yaroslav Zaulychnyi, Myroslav Karpets, and Ievgen Solodkyi, J. Eur. Ceram. Soc., 44: 51 (2024); https://doi.org/10.1016/j.jeurceramsoc.2023.08.028
  24. P. B. Oliete, J. I. Pena, A. Larrea, V. M. Orera, and J. L. Lorca, Adv. Mater., 19: 2313 (2007); https://doi.org/10.1002/adma.200602379
  25. W. S. Rubink, V. Ageh, H. Lide, N. A. Ley, M. L. Young, D. T. Casem, E. J. Faierson, and T. W. Scharf, J. Eur. Ceram. Soc., 41: 3321 (2021); https://doi.org/10.1016/j.jeurceramsoc.2021.01.044
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement