Download the full
version of the article (in PDF format)
Duan MANTAN, V.T. MOSIAK, D.L. PALAHECHA, K.V. KRYVENKO,
S.H. PONOMARCHUK, D.O. RIEZNIK, Ya.V. ZAULYCHNYI, O.V. STEPANOV, D.S. LEONOV,
M.Yu. BARABASH, and Yu.I. BOHOMOL
Structure and Properties of a Composite Material
Based on Silicon Carbide Reinforced with High-Entropy Diboride at the Mesolevel
959–971 (2024)
PACS numbers: 61.72.Ff, 62.20.de, 62.20.Qp, 62.23.Pq, 81.05.Je, 81.40.Np, 81.70.Jb
Directionally solidified SiC/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 eutectic ceramics is prepared
by the floating zone method based on the crucibleless zone melting of compacted powders using silicon
carbide and transition-metal diboride (TiB2, ZrB2, HfB2, NbB2 and TaB2) powders as initial materials. The
microstructure of as-prepared composites consists of a silicon carbide matrix uniformly reinforced on
mesoscopic level by a single-phase high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 diboride. The XRD analysis of
the composites confirms the presence of the following phases in their compositions: SiC and
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2. The effect of the solidification rate on the microstructural and
micromechanical characteristics of the SiC/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 ceramics is revealed. As found, an
increase in the solidification rate leads to a decrease in the size of the reinforcing phase and an increase
in hardness and fracture toughness from 22.2 to 24.9 GPa and 3.6 to 3.9 MPa?m1/2, respectively
KEY WORDS: silicon carbide, high-entropy borides, directionally solidified eutectic composites, Vickers hardness, fracture toughness
DOI: https://doi.org/10.15407/nnn.22.04.959
REFERENCES
- W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, J. Am. Ceram. Soc., 90: 1347 (2010); https://doi.org/10.1111/j.1551-2916.2007.01583.x
- W. G. Fahrenholtz and G. E. Hilmas, Scripta Materialia, 129: 94 (2017); https://doi.org/10.1016/j.scriptamat.2016.10.018
- Brian C. Wyatt, Srinivasa Kartik Nemani, Gregory E. Hilmas, Elizabeth J. Opila, and Babak Anasori, Nat. Rev. Mater., 1 (2023); https://doi.org/10.1038/s41578-023-00619-0
- T. A. Parthasarathy, R. A. Rapp, M. Opeka, and R. J. Kerans, J. Am. Ceram. Soc., 92: 1079 (2010); https://doi.org/10.1111/j.1551-2916.2009.03031.x
- F. Monteverde and A. Bellosi, J. Electrochem. Soc., 150: B552 (2003); https://doi.org/10.1149/1.1618226
- X. T. Zhao, H. L. Wang, and R. Zhang, Key Engineering Materials, 697: 680 (2016); https://doi.org/10.4028/www.scientific.net/KEM.697.680
- E. Eakins, D. D. Jayaseelan, and W. E. Lee, Metall. Mater. Trans. A, 42: 878 (2011); https://doi.org/10.1007/s11661-010-0540-8
- H. Zhang, D. D. Jayaseelan, I. Bogomol, M. J. Reece, C. Hu, S. Grasso, and W. E. Lee, Journal of Alloys and Compounds, 785: 958 (2019); https://doi.org/10.1016/j.jallcom.2019.01.208
- J. Llorca and V. M. Orera, Progress in Materials Science, 51: 711 (2006); https://doi.org/10.1016/j.pmatsci.2005.10.002
- R. L. Ashbrook, Journal of the American Ceramic Society, 60: 428 (1977); https://doi.org/10.1111/j.1151-2916.1977.tb15527.x
- ². Bogomol, T. Nishimura, O. Vasylkiv, Y. Sakka, and P. Loboda, Journal of Alloys and Compounds, 485: 677 (2009); https://doi.org/10.1016/j.jallcom.2009.06.044
- Z. Jiamin, Z. Degui, Z. Haiwen, I. Bogomol, S. Grasso, and C. Hu, International Journal of Applied Ceramics Technology, 15: 619 (2018); https://doi.org/10.1111/ijac.12838
- J. Gild, Y. Zhang, T. Harrington, and S. Jiang, Sci. Rep., 6: 37946 (2016); https://doi.org/10.1038/srep37946
- W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, Journal of the American Ceramic Society, 90: 1347 (2007); https://doi.org/10.1111/j.1551-2916.2007.01583.x
- G.-J. Zhang, W.-M. Guo, D.-W. Ni, and Y.-M. Kan, Journal of Physics, 176: 012041 (2009); https://doi.org/10.1088/1742-6596/176/1/012041
- W. Fahrenholtz and G. Hilmas, International Materials Reviews, 57: 61 (2012); https://doi.org/10.1179/1743280411Y.0000000012
- Ultra?High Temperature Ceramics: Materials for Extreme Environment Applications (Eds. W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, and Y. Zhou) (John Wiley & Sons: 2014); https://doi.org/10.1002/9781118700853
- Jin-Hao Yuan, Wei-Ming Guo, Yang Liu, Shi-Kuan Sun, Xiao-Ming Duan, De-Chang Jia, and Hua-Tay Lin, J. Am. Ceram. Soc., 105: 1629 (2022); https://doi.org/10.1111/jace.18209
- I. Bogomol and P. Loboda, Directionally Solidified Ceramic Eutectics for High-Temperature Applications. In: MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments (Eds. J. Low and Y. Sakka) (IGI Global: 2013), p. 303; https://doi.org/10.4018/978-1-4666-4066-5.ch010
- K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett., 1: 13 (1982); https://doi.org/10.1007/BF00724706
- K. E. Petersen, Proceedings of IEEE, 70: 420 (1982); https://doi.org/10.1109/PROC.1982.12331
- Gang Yao, William-Yi Wang, Pei-Xuan Li, Ke Ren, Jia-Qi Lu, Xing-Yu Gao, De-Ye Lin, Jun Wang, Yi-Guang Wang, Hai-Feng Song, Zi-Kui Liu, and Jin-Shan Li, Rare Met., 42: 614 (2023); https://doi.org/10.1007/s12598-022-02152-5
- Iurii Bogomol, Elmira Ferkhatly, Serhii Ponomarchuk, Yaroslav Zaulychnyi, Myroslav Karpets, and Ievgen Solodkyi, J. Eur. Ceram. Soc., 44: 51 (2024); https://doi.org/10.1016/j.jeurceramsoc.2023.08.028
- P. B. Oliete, J. I. Pena, A. Larrea, V. M. Orera, and J. L. Lorca, Adv. Mater., 19: 2313 (2007); https://doi.org/10.1002/adma.200602379
- W. S. Rubink, V. Ageh, H. Lide, N. A. Ley, M. L. Young, D. T. Casem, E. J. Faierson, and T. W. Scharf, J. Eur. Ceram. Soc., 41: 3321 (2021); https://doi.org/10.1016/j.jeurceramsoc.2021.01.044
|