Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

L.O. VORONTSOVA, N.V. BABKINA, O.I. ANTONENKO, L.F. KOSYANCHUK, and O.O. BROVKO

Effect of Nano-SiO2 Content on Optical Properties, Damping, and Thermal Stability of Polyurethane Composites
915–928 (2024)

PACS numbers: 62.23.Pq, 62.25.De, 78.67.Sc, 81.07.Pr, 81.16.Be, 81.70.Pg, 82.35.Np

Polyurethane (PU) matrices based on polyester and aromatic diisocyanate with a content of 1, 3, 5, 7 wt.% nano-SiO2 were formed by the in situ method and investigated to determine the optimal composition of PU nanocomposite with a balanced combination of such functional characteristics as transparency, UV protection, damping, and thermal stability. The spectrophotometry method showed that the initial PU matrix and formed PU nanocomposites demonstrate a high (??90%) transmittance in the range of visible wavelengths. At the same time, the PU matrix is characterized by effective blocking of UV radiation with a wavelength of up to ??290 nm, but a bathochromic shift (up to ??315 nm) of the transmission spectra is observed for filled PUs. According to thermogravimetric analysis, the thermal stability of PU composites increases, when nanosize SiO2 is introduced into the matrix. The operating temperature range for this composite is increased by almost 30?Ñ, when the filler content is of 5–7 wt.%. The high damping efficiency of the investigated PUs is shown by the method of dynamic mechanical analysis. PU composite with a content of 7 wt.% nano-SiO2 has a 1.5-fold increase in storage modulus and effective damping temperature range from ?6?Ñ to 47?Ñ. As concluded, the optimal content of nano-SiO2 is of 7 wt.% to provide a balanced combination of such properties as transparency, UV protection, thermal stability, elasticity, and effective damping for PU composite

KEY WORDS: polyurethane, nanocomposite, transparency, ultraviolet protection, damping, thermal stability

DOI:  https://doi.org/10.15407/nnn.22.04.915

REFERENCES
  1. Polymer-Based Multifunctional Nanocomposites and Their Applications (Eds. K. Song, J. Z. Guo, and C. Liu) (Amsterdam: Elsevier: 2019).
  2. P. Sikdar, T. M. Dip, A. K. Dhar, M. Bhattacharjee, M. S. Hoque, and S. B. Ali, J. Appl. Polym. Sci., 139, No. 38: e52832 (2022); https://doi.org/10.1002/app.52832
  3. H.-W. Engels, H.-G. Pirkl, R. Albers, R. W. Albach, J. Krause, A. Hoffmann, H. Casselmann, and J. Dormish, Angew. Chem. Int. Ed., 52, No. 36: 9422 (2013); https://doi.org/10.1002/anie.201302766
  4. Polyurethane Chemistry: Renewable Polyols and Isocyanates. ACS Symposium Series, American Chemical Society (Eds. Ram K. Gupta and Pawan K. Kahol) (Washington, DC: 2021), vol. 1380.
  5. M. F. Sonnenchein, Polyurethanes: Science, Technology, Markets, and Trends (Hoboken: John Wiley & Sons: 2015).
  6. I. V. Khudyakov, R. D. Zopf, and N. J. Turro, Designed Monomers and Polymers, 12, No. 4: 279 (2009); https://doi.org/10.1163/156855509X448253
  7. Polyurethane Polymers: Composites and Nanocomposites (Eds. S. Thomas, J. Datta, J. T. Haponiuk, and A. Reghunadhan) (Amsterdam: Elsevier: 2017).
  8. S. Chaitoglou, L. Spachis, G. Zisis, I. Raptis, N. Papanikolaou, A. Vavouliotis, R. Penedo, N. Fernandes, and A. Dimoulas, Progress in Organic Coatings, 150: Article 105984 (2021); https://doi.org/10.1016/j.porgcoat.2020.105984
  9. L. Stroea, A.-L. Chibac-Scutaru, and V. Melinte, Polymers, 13, No. 8: 1318 (2021); https://doi.org/10.3390/polym13081318
  10. R. Huang, X. Du, H. Wang, X. Cheng, and Z. Du, Journal of Applied Polymer Science, 139, No. 15: 51927 (2022); https://doi.org/10.1002/app.51927
  11. S. Zhang, D. Zhang, H. Bai, and W. Ming, ACS Applied Nano Materials, 3, No. 1: 59 (2020); https://doi.org/10.1021/acsanm.9b01540
  12. M. Joshi, B. Adak, and B. S. Butola, Progress in Materials Science, 97: 230 (2018); https://doi.org/10.1016/j.pmatsci.2018.05.001
  13. S. Mallakpou and M. Naghdi, Progress in Materials Science, 97: 409 (2018); https://doi.org/10.1016/j.pmatsci.2018.04.002
  14. D. W. Lee and B. R. Yoo, Journal of Industrial and Engineering Chemistry, 38: 1 (2016); https://doi.org/10.1016/j.jiec.2016.04.016
  15. M. Bock, T. Engbert, S. Groth, B. Klinksiek, P. Yeske, G. Jonschker, and U. Dellwo, Transparent Coating Compositions Containing Nanoscale Particles and Having Improved Scratch Resistance (US Patent 6020419 (2000)).
  16. L. Lin, Z. Li, H. Mao, W. Li, and Ch. Wang, Frontiers in Materials, 8: Article 681678 (2021); https://doi.org/10.3389/fmats.2021.681678
  17. A. Khosravi, M. Sadeghi, H. Z. Banadkohi, and M. M. Talakesh, Industrial & Engineering Chemistry Research, 53: 2011 (2014); https://doi.org/10.1021/ie403322w
  18. D. J. Mills, S. S. Jamali, and K. Paprocka, Surf. Coating Tech., 209: 137 (2012); http://dx.doi.org/10.1016/j.surfcoat.2012.08.056
  19. K. Kojio, S. Nozaki, A. Takahara, and S. Yamasaki, Journal of Polymer Research, 27, No. 6: 140 (2020); https://doi.org/10.1007/s10965-020-02090-9
  20. M. Nakamura, Y. Aoki, G. Enna, K. Oguro, and H. Wada, J. Elastomers and Plastics, 47, No. 6: 515 (2015); https://doi.org/10.1177/0095244314526739
  21. H. Chen, H. J. Zhou, D. J. Liu, and Y. T. Li, Advanced Materials Research, 581–582: 710 (2012); https://doi.org/10.4028/www.scientific.net/AMR.581-582.710
  22. J. ?ulin, Polimery, 61, No. 3: 159 (2016); https://dx.doi.org/10.14314/polimery.2016.159
  23. X. Gao, Y. Zhu, X. Zhao, Z. Wang, D. An, Y. Ma, S. Guan, Y. Du, and B. Zhou, Applied Surface Science, 257, No. 10: 4719 (2011); https://doi.org/10.1016/j.apsusc.2010.12.138
  24. B. S. Kim, S. H. Park, and B. K. Kim, Colloid and Polymer Science, 284, No. 9: 1067 (2006); https://doi.org/10.1007/s00396-006-1488-5
  25. B. M. Jagajeevan Raj, K. S. Nithin, K. N. Shilpa, S. Sachhidananda, S. Sandeep, H. Siddaramaian, and K. Pushpalatha, Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications (Elsevier: 2021), Ch. 5; https://doi.org/10.1016/B978-0-12-818484-4.00003-3
  26. B. L. Diffey, Methods, 28, No. 1: 4 (2002); https://doi.org/10.1016/S1046-2023(02)00204-9
  27. A. Mohammad Rabea, M. Mohsenia, S. M. Mirabedini, and M. Hashemi Tabatabaei, Applied Surface Science, 258, No. 10: 4391 (2012); https://doi.org/10.1016/j.apsusc.2011.12.123
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement