Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

Mahmood M. SALEH, Hamadi KHEMAKHEM, Ishmael K. JASSEM, and Raed H. AL-SAQA

Preparation and Characterization of Cermet MSZ/Ni–Al Coating Deposited by Flame-Spraying Technique
833–846 (2024)

PACS numbers: 61.72.Ff, 61.72.Mm, 68.37.Ps, 68.55. J-, 79.60.Dp, 81.15.Cd, 81.40.Ef

10MgO–ZrO2/Ni–Al cermet powders are sprayed by flame-spray technique onto low-carbon steel substrates’ type (API 5L) used commonly in oil industrial. The present study is aimed to investigating the influence of thermal-treatment behaviours on the structural, mechanical, and microstructure evolution properties to check the thermal phase stability at high temperatures. The free-standing cermet samples (of 1.85 mm thick) are heat-treated in air at 1000, 1100, 1200, 1300, and 1350?C, for a 2-hours’ ageing time. The test properties are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), wear loss, and Vickers hardness. The results show the deposited cermet coating became thicker and have ideal phase stability with the best mechanical attributes, when the heat treatment is at 1300?C for 2 hours of sintering. Above that, at 1350?C, the microstructural surface shows split-up cracks and pores across the layers, which is not reliable for longer thermal stability. The results also show that zirconium oxide (ZrO2) has a significant change from cubic (f.c.c. ZrO2), tetragonal (t-ZrO2) and monoclinic (m-ZrO2) structures through the various temperature degrees. These results also show that the wear loss value of the cermet coating is so lower, depending strongly on the porosity and hardness values. Finally, we can say that the heat treatment at 1300?C (2 hours) has a typical uniform lamellar structure and high hardness values, which is reliable for longer thermal stability

KEY WORDS: thermal-ageing treatment, cermet coating, MSZ/Ni–Al system, thermal-spray coating, mechanical properties

DOI:  https://doi.org/10.15407/nnn.22.04.833

REFERENCES
  1. R. Hughes, Deposition Technologies for Films and Coatings, 53, No. 9: (2008); https://doi.org/10.1016/B978-0-8155-2031-3.00001-6
  2. P. L. Fauchais, J. V. R. Heberlein, and M. J. Boulos, Thermal Spray Fundamentals: From Powder to Part (New York: Springer: 2014); http://dx.doi.org/10.1007/978-0-387-68991-3
  3. R. A. Miller, J. Therm. Spray Technol., 6, No. 1: 35 (1997); https://doi.org/10.1007/BF02646310
  4. R. H. Al-saqa and I. K. Jassim, International Journal of Scientific Research in Science and Technology (IJSRST), 10, Iss. 1: 33 (2023); https://doi.org/10.32628/IJSRST229692
  5. R. Vassen and X. Cao, J. Am. Ceram. Soc., 83, No. 8: 2023 (2000).
  6. N. M. Ibrahim, Al-Bahir Journal for Engineering and Pure Sciences, 2, Iss. 2: Article 3 (2023); https://doi.org/10.55810/2313-0083.1020
  7. D. Zhou, J?. Malzbender, Y. J. Sohn, O. Guillon, and R. Va?en, Journal of the European Ceramic Society, 39, Iss. 2–3: 482 (2019); https://doi.org/10.1016/j.jeurceramsoc.2018.09.020
  8. R. Va?en, E. Bakan, C. Gatzen, S. Kim, D. E. Mack, and O. Guillon, Coatings, 9, No. 12: 784 (2019); https://doi.org/10.3390/coatings9120784
  9. O. V. Savvova, H. K. Voronov, O. I. Fesenko, V. D. Tymofieiev, and Î. ˛. Pylypenko, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 3: 667 (2022); https://doi.org/10.15407/nnn.20.03.667
  10. I. Berezin and T. Troezynski, Journal Mater. Sci. Letter, 15, No. 3: 214 (1996); https://doi.org/10.1007/BF00274454
  11. F. Caio and C. Moreau, Coatings, 9, No. 11: 746 (2019); https://doi.org/10.3390/coatings9110746
  12. Y. S. Darweesh and I. K. Jassim, J. Phys. Conf. Ser., 1294 (2019); https://doi.org/10.1088/1742-6596/1294/2/022011
  13. P. C. Tsai and C. S. Hsu, Surface and Coatings Technology, 185, No. 1: 29 (2004); https://doi.org/10.1016/j.surfcoat.2003.08.090
  14. I. K. Jassim, K.-U. Neumann, D. Visser, P. J. Webster, and K. R. A. Ziebeck, Journal of Magnetism and Magnetic Materials, 104–107, Pt. 3: 2074 (1992); https://doi.org/10.1016/0304-8853(92)91674-I
  15. R. H. Al-saqa and I. K. Jassim, Digest Journal of Nanomaterials & Biostructures, 18, No. 1: 165 (2023); https://doi.org/10.15251/DJNB.2023.181.165
  16. S. Singh, C. C. Berndt, R. K. Singh Raman, H. Singh, and A. S. M. Ang, Materials, 16, No. 2: 516 (2023); https://doi.org/10.3390/ma16020516
  17. K. Derelizade, Thermal Spraying of Novel Composite Coating Compositions for Wear Resistance Applications (Doctoral thesis) (University of Nottingham: 2023).
  18. I. K. Jassim and S. Y. Darweesh, Tikrit Journal of Pure Science, 23, No. 5: 140 (2018); https://doi.org/10.25130/tjps.v23i5.597
  19. K. Derelizade, A. Rincon, F. Venturi, R. G. Wellman, A. Kholobystov, and T. Hussain, Surface and Coatings Technology, 432: No. 2: 128063 (2022); https://doi.org/10.1016/j.surfcoat.2021.128063
  20. S. R. Al-Khuzate and I. K. Jassim, International Journal of Latest Research in Engineering and Technology (IJLRET), 3: 35 (2017).
  21. J. Edward, V. Gidersleeve, and R. Vabsen, Journal of Thermal Spray Technology, 32: 778 (2023); https://doi.org/10.1007/s11666-023-01587-1
  22. K. Torkashvand, Sh. Joshi, and M. Gupta, Journal of Thermal Spray Technology, 31: 342 (2022); https://doi.org/10.1007/s11666-022-01358-4
  23. L. Pawiowski, Journal of Thermal Spray Technology, 5, No. 3: 317 (1996); https://doi.org/10.1007/BF02645884
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement