Download the full
version of the article (in PDF format)
Mahmood M. SALEH, Hamadi KHEMAKHEM, Ishmael K. JASSEM, and
Raed H. AL-SAQA
Preparation and Characterization of Cermet
MSZ/Ni–Al Coating Deposited by Flame-Spraying Technique
833–846 (2024)
PACS numbers: 61.72.Ff, 61.72.Mm, 68.37.Ps, 68.55. J-, 79.60.Dp, 81.15.Cd, 81.40.Ef
10MgO–ZrO2/Ni–Al cermet powders are sprayed by flame-spray technique onto low-carbon steel
substrates’ type (API 5L) used commonly in oil industrial. The present study is aimed to investigating the
influence of thermal-treatment behaviours on the structural, mechanical, and microstructure evolution
properties to check the thermal phase stability at high temperatures. The free-standing cermet samples (of
1.85 mm thick) are heat-treated in air at 1000, 1100, 1200, 1300, and 1350?C, for a 2-hours’ ageing time.
The test properties are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy
dispersive spectroscopy (EDS), wear loss, and Vickers hardness. The results show the deposited cermet
coating became thicker and have ideal phase stability with the best mechanical attributes, when the heat
treatment is at 1300?C for 2 hours of sintering. Above that, at 1350?C, the microstructural surface shows
split-up cracks and pores across the layers, which is not reliable for longer thermal stability. The results
also show that zirconium oxide (ZrO2) has a significant change from cubic (f.c.c. ZrO2), tetragonal (t-ZrO2)
and monoclinic (m-ZrO2) structures through the various temperature degrees. These results also show that the
wear loss value of the cermet coating is so lower, depending strongly on the porosity and hardness values.
Finally, we can say that the heat treatment at 1300?C (2 hours) has a typical uniform lamellar structure and
high hardness values, which is reliable for longer thermal stability
KEY WORDS: thermal-ageing treatment, cermet coating, MSZ/Ni–Al system, thermal-spray coating, mechanical properties
DOI: https://doi.org/10.15407/nnn.22.04.833
REFERENCES
- R. Hughes, Deposition Technologies for Films and Coatings, 53, No. 9: (2008); https://doi.org/10.1016/B978-0-8155-2031-3.00001-6
- P. L. Fauchais, J. V. R. Heberlein, and M. J. Boulos, Thermal Spray Fundamentals: From Powder to Part (New York: Springer: 2014); http://dx.doi.org/10.1007/978-0-387-68991-3
- R. A. Miller, J. Therm. Spray Technol., 6, No. 1: 35 (1997); https://doi.org/10.1007/BF02646310
- R. H. Al-saqa and I. K. Jassim, International Journal of Scientific Research in Science and Technology (IJSRST), 10, Iss. 1: 33 (2023); https://doi.org/10.32628/IJSRST229692
- R. Vassen and X. Cao, J. Am. Ceram. Soc., 83, No. 8: 2023 (2000).
- N. M. Ibrahim, Al-Bahir Journal for Engineering and Pure Sciences, 2, Iss. 2: Article 3 (2023); https://doi.org/10.55810/2313-0083.1020
- D. Zhou, J?. Malzbender, Y. J. Sohn, O. Guillon, and R. Va?en, Journal of the European Ceramic Society, 39, Iss. 2–3: 482 (2019); https://doi.org/10.1016/j.jeurceramsoc.2018.09.020
- R. Va?en, E. Bakan, C. Gatzen, S. Kim, D. E. Mack, and O. Guillon, Coatings, 9, No. 12: 784 (2019); https://doi.org/10.3390/coatings9120784
- O. V. Savvova, H. K. Voronov, O. I. Fesenko, V. D. Tymofieiev, and Î. ˛. Pylypenko, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 3: 667 (2022); https://doi.org/10.15407/nnn.20.03.667
- I. Berezin and T. Troezynski, Journal Mater. Sci. Letter, 15, No. 3: 214 (1996); https://doi.org/10.1007/BF00274454
- F. Caio and C. Moreau, Coatings, 9, No. 11: 746 (2019); https://doi.org/10.3390/coatings9110746
- Y. S. Darweesh and I. K. Jassim, J. Phys. Conf. Ser., 1294 (2019); https://doi.org/10.1088/1742-6596/1294/2/022011
- P. C. Tsai and C. S. Hsu, Surface and Coatings Technology, 185, No. 1: 29 (2004); https://doi.org/10.1016/j.surfcoat.2003.08.090
- I. K. Jassim, K.-U. Neumann, D. Visser, P. J. Webster, and K. R. A. Ziebeck, Journal of Magnetism and Magnetic Materials, 104–107, Pt. 3: 2074 (1992); https://doi.org/10.1016/0304-8853(92)91674-I
- R. H. Al-saqa and I. K. Jassim, Digest Journal of Nanomaterials & Biostructures, 18, No. 1: 165 (2023); https://doi.org/10.15251/DJNB.2023.181.165
- S. Singh, C. C. Berndt, R. K. Singh Raman, H. Singh, and A. S. M. Ang, Materials, 16, No. 2: 516 (2023); https://doi.org/10.3390/ma16020516
- K. Derelizade, Thermal Spraying of Novel Composite Coating Compositions for Wear Resistance Applications (Doctoral thesis) (University of Nottingham: 2023).
- I. K. Jassim and S. Y. Darweesh, Tikrit Journal of Pure Science, 23, No. 5: 140 (2018); https://doi.org/10.25130/tjps.v23i5.597
- K. Derelizade, A. Rincon, F. Venturi, R. G. Wellman, A. Kholobystov, and T. Hussain, Surface and Coatings Technology, 432: No. 2: 128063 (2022); https://doi.org/10.1016/j.surfcoat.2021.128063
- S. R. Al-Khuzate and I. K. Jassim, International Journal of Latest Research in Engineering and Technology (IJLRET), 3: 35 (2017).
- J. Edward, V. Gidersleeve, and R. Vabsen, Journal of Thermal Spray Technology, 32: 778 (2023); https://doi.org/10.1007/s11666-023-01587-1
- K. Torkashvand, Sh. Joshi, and M. Gupta, Journal of Thermal Spray Technology, 31: 342 (2022); https://doi.org/10.1007/s11666-022-01358-4
- L. Pawiowski, Journal of Thermal Spray Technology, 5, No. 3: 317 (1996); https://doi.org/10.1007/BF02645884
|