Download the full
version of the article (in PDF format)
H. RAFAI, B. SMILI, E. SAKHER, M. SAKMECHE, A. BENSELHOUB,
R. TIGRINE, R. PESCI, M. BOUOUDINA, and S. BELLUCCI
Structural and Magnetic Properties of
Nanostructured Ni80Co17Mo3 Alloy Powder
803–822 (2024)
PACS numbers: 68.37.Hk, 75.50.Tt, 75.60.Ej, 81.07.Wx, 81.20.Ev, 81.20.Wk, 81.40.Rs
Mechanical alloying (MA) with a high-energy planetary ball mill is used to create
nanostructured Ni80Co17Mo3-alloy samples from pure elemental powders. The powders obtained are analysed
using x-ray diffraction, scanning electron microscopy, and vibrating-sample magnetometry techniques to
investigate the microstructure, morphology, particle-sizes’ distribution, and magnetic properties as
functions of milling time. The results show that x-ray diffraction analysis suggests the formation of
nanostructured f.c.c. solid solutions, f.c.c.-NiCo(Mo), which become the dominant phase after 6 h of MA,
with decreasing crystallite sizes ranging from 15.1 nm to 9.78 nm and increasing microstrain (0.41–0.66%)
with increasing milling time to 72 h. Morphological observations utilizing scanning electron microscopy
validate the production of nanocomposite and reveal a progressive refinement in particle size with milling
time and a narrow particle-sizes’ distribution with an irregular shape for longer milling. The milling
process induces significant changes in the magnetic properties, where the magnetism of the combination is
lost due to the combined effects of crystallite-size reduction. After milling, the remanence ratio Mr/Ms
(??4.1·10?3) and coercive field (??10.87 Oe) are found to be declining. The findings indicate that the alloy
has reached its maximum level of magnetization and displays a very weak magnetic response
KEY WORDS: nanomaterials, mechanical alloying, particles’ morphology and size, x-ray diffraction, magnetic properties
DOI: https://doi.org/10.15407/nnn.22.04.803
REFERENCES
- M. Amiri, M. Salavati-Niasari, and A. Akbari, Advances in Colloid and Interface Science, 265: 29 (2019); https://doi.org/10.1016/J.CIS.2019.01.003
- Y. Zhao, Z. Zhang, Z. Pan, and Y. Liu, Wiley Online Library, 1, No. 3: 0089 (2021); https://doi.org/10.1002/EXP.20210089
- H. Ahmadian Baghbaderani, S. Sharafi, and M. Delshad Chermahini, Powder Technology, 230: 241 (2012); https://doi.org/10.1016/J.POWTEC.2012.07.039
- K. H. J. Buschow, Reports on Progress in Physics, 40, No. 10: 1179 (1977); https://doi.org/10.1088/0034-4885/40/10/002
- N. Abu-warda, M. V. Utrilla, M. D. Escalera, E. Otero, and M. D. L?pez, Powder Technology, 328: 235 (2018); https://doi.org/10.1016/J.POWTEC.2018.01.028
- X. Mao, J. Xu, and H. Cui, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8, No. 6: 814 (2016); https://doi.org/10.1002/WNAN.1400
- V. Franco, J.S. Bl?zquez, B. Ingale, and A. Conde, Annual Review of Materials Research, 42: 305 (2012); https://doi.org/10.1146/ANNUREV-MATSCI-062910-100356
- S. Chandrasekaran, L. Yao, L. Deng, C. R. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, and P. Zhang, Chemical Society Reviews, 48, No. 15: 4178 (2019); https://doi.org/10.1039/C8CS00664D
- N. Loudjani, N. Bensebaa, S. Alleg, C. Djebbari, and J. M. Greneche, physica status solidi (a), 208, No. 9: 2124 (2011); https://doi.org/10.1002/PSSA.201026723
- X. Zhang, Y. Li, Y. Guo, A. Hu, M. Li, T. Hang, and H. Ling, International Journal of Hydrogen Energy, 44, No. 57: 29946 (2019); https://doi.org/10.1016/J.IJHYDENE.2019.09.193
- H. Raanaei, M. Rahimi, and V. Mohammad-Hosseini, Journal of Magnetism and Magnetic Materials, 508: 0166870 (2020); https://doi.org/10.1016/J.JMMM.2020.166870
- T. ?im?ek, ?. Akg?l, ?. G?ler, I. ?zkul, B. Avar, A. K. Chattopadhyay, C. A. Canbay, and S. H. G?ler, Materials Today Communications, 29: 102986 (2021); https://doi.org/10.1016/J.MTCOMM.2021.102986
- R. R. Shahi and R. K. Mishra, High Entropy Alloys (CRC Press: 2020); https://doi.org/10.1201/9780367374426-22
- M. Triki, H. Mechri, H. Azzaz, and M. Azzaz, Journal of Magnetism and Magnetic Materials, 541: 168514 (2022); https://doi.org/10.1016/j.jmmm.2021.168514
- J. Schilz, M. Riffel, K. Pixius, and H. J. Meyer, Powder Technology, 105, Nos. 1–3: 149 (1999); https://doi.org/10.1016/S0032-5910(99)00130-8
- A. Abuchenari and M. Moradi, Journal of Composites and Compounds, 1, No. 1: 10 (2019); https://doi.org/10.29252/JCC.1.1.2
- I. Constantinides, M. Gritsch, A. Adriaens, H. Hutter, and F. Adams, Analytica Chimica Acta, 440, No. 2: 189 (2001); https://doi.org/10.1016/S0003-2670(01)01061-3
- T. Gouasmia, N. Loudjani, M. Boulkra, M. Benchiheub, K. Belakroum, and M. Bououdina, Applied Physics A, 128, No. 10: 935 (2022); https://doi.org/10.1007/s00339-022-06074-y
- T. Ramkumar, M. Selvakumar, R. Vasanthsankar, A. S. Sathishkumar, P. Narayanasamy, and G. Girija, Journal of Magnesium and Alloys, 6, No. 4: 390 (2018); https://doi.org/10.1016/J.JMA.2018.08.002
- D. L. Bish and J. E. Post, American Mineralogist, 78, Nos. 9–10: 932 (1993).
- S. Verma, S. Rani, S. Kumar, and M. A. M. Khan, Ceramics International, 44, No. 2: 1653 (2018); https://doi.org/10.1016/J.CERAMINT.2017.10.090
- P. Tandon, R. Sahu, and A. Mishra, Journal of Materials Science, 57, No. 41: 19631 (2022); https://doi.org/10.1007/s10853-022-07808-2
- M. Hossain, B. Qin, B. Li, and X. Duan, Nano Today, 42: 101338 (2022); https://doi.org/10.1016/j.nantod.2021.101338
- Z. Hedayatnasab, F. Abnisa, and W. M. A. Wan Daud, Materials & Design, 123: 174 (2017); https://doi.org/10.1016/J.MATDES.2017.03.036
- J. Fidler and T. Schrefl, Journal of Physics D: Applied Physics, 33, No. 15: R135 (2000); https://doi.org/10.1088/0022-3727/33/15/201
- X. Fang, G. Jin, X. Cui, and J.-N. Liu, Surface and Coatings Technology, 305: 208 (2016); https://doi.org/10.1016/J.SURFCOAT.2016.08.042
- A. L. Ortiz, J. W. Tian, J. C. Villegas, L. L. Shaw, and P. K. Liaw, Acta Materialia, 56, No. 3: 413 (2008); https://doi.org/10.1016/J.ACTAMAT.2007.10.003
- Y. Xu, Y. Sun, X. Dai, B. Liao, S. Zhou, and D. Chen, Journal of Materials Research and Technology, 8, No. 3: 2486 (2019); https://doi.org/10.1016/J.JMRT.2019.02.007
- M. D. Chermahini, M. Zandrahimi, H. Shokrollahi, and S. Sharafi, Journal of Alloys and Compounds, 477, Nos. 1–2: 45 (2009); https://doi.org/10.1016/J.JALLCOM.2008.10.163
- R. Hamzaoui, S. Guessasma, O. Elkedim, and E. Gaffet, Materials Science and Engineering: B, 119, No. 2: 164 (2005); https://doi.org/10.1016/J.MSEB.2005.02.049
- X. Amils, J. Nogu?s, S. Suri?ach, and M. D. Bar?, Journal of Magnetism and Magnetic Materials, 203, Nos. 1–3: 129 (1999); https://doi.org/10.1016/S0304-8853(99)00211-5
- J. J. Su?ol, A. Gonz?lez, J. Saurina, L. Escoda, and L. Fern?ndez Barqu?n, Journal of Non-Crystalline Solids, 353, Nos. 8–10: 865 (2007); https://doi.org/10.1016/J.JNONCRYSOL.2006.12.108
- William Hopkins, The Davenport Electric Motor: A Look at How the First Electric Motor Can Teach the Fundamentals of Magnetism and Motion (Ed. John A. Goulet) (Worcester Polytechnic Institute: 2022).
|