Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

H. RAFAI, B. SMILI, E. SAKHER, M. SAKMECHE, A. BENSELHOUB, R. TIGRINE, R. PESCI, M. BOUOUDINA, and S. BELLUCCI

Structural and Magnetic Properties of Nanostructured Ni80Co17Mo3 Alloy Powder
803–822 (2024)

PACS numbers: 68.37.Hk, 75.50.Tt, 75.60.Ej, 81.07.Wx, 81.20.Ev, 81.20.Wk, 81.40.Rs

Mechanical alloying (MA) with a high-energy planetary ball mill is used to create nanostructured Ni80Co17Mo3-alloy samples from pure elemental powders. The powders obtained are analysed using x-ray diffraction, scanning electron microscopy, and vibrating-sample magnetometry techniques to investigate the microstructure, morphology, particle-sizes’ distribution, and magnetic properties as functions of milling time. The results show that x-ray diffraction analysis suggests the formation of nanostructured f.c.c. solid solutions, f.c.c.-NiCo(Mo), which become the dominant phase after 6 h of MA, with decreasing crystallite sizes ranging from 15.1 nm to 9.78 nm and increasing microstrain (0.41–0.66%) with increasing milling time to 72 h. Morphological observations utilizing scanning electron microscopy validate the production of nanocomposite and reveal a progressive refinement in particle size with milling time and a narrow particle-sizes’ distribution with an irregular shape for longer milling. The milling process induces significant changes in the magnetic properties, where the magnetism of the combination is lost due to the combined effects of crystallite-size reduction. After milling, the remanence ratio Mr/Ms (??4.1·10?3) and coercive field (??10.87 Oe) are found to be declining. The findings indicate that the alloy has reached its maximum level of magnetization and displays a very weak magnetic response

KEY WORDS: nanomaterials, mechanical alloying, particles’ morphology and size, x-ray diffraction, magnetic properties

DOI:  https://doi.org/10.15407/nnn.22.04.803

REFERENCES
  1. M. Amiri, M. Salavati-Niasari, and A. Akbari, Advances in Colloid and Interface Science, 265: 29 (2019); https://doi.org/10.1016/J.CIS.2019.01.003
  2. Y. Zhao, Z. Zhang, Z. Pan, and Y. Liu, Wiley Online Library, 1, No. 3: 0089 (2021); https://doi.org/10.1002/EXP.20210089
  3. H. Ahmadian Baghbaderani, S. Sharafi, and M. Delshad Chermahini, Powder Technology, 230: 241 (2012); https://doi.org/10.1016/J.POWTEC.2012.07.039
  4. K. H. J. Buschow, Reports on Progress in Physics, 40, No. 10: 1179 (1977); https://doi.org/10.1088/0034-4885/40/10/002
  5. N. Abu-warda, M. V. Utrilla, M. D. Escalera, E. Otero, and M. D. L?pez, Powder Technology, 328: 235 (2018); https://doi.org/10.1016/J.POWTEC.2018.01.028
  6. X. Mao, J. Xu, and H. Cui, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 8, No. 6: 814 (2016); https://doi.org/10.1002/WNAN.1400
  7. V. Franco, J.S. Bl?zquez, B. Ingale, and A. Conde, Annual Review of Materials Research, 42: 305 (2012); https://doi.org/10.1146/ANNUREV-MATSCI-062910-100356
  8. S. Chandrasekaran, L. Yao, L. Deng, C. R. Bowen, Y. Zhang, S. Chen, Z. Lin, F. Peng, and P. Zhang, Chemical Society Reviews, 48, No. 15: 4178 (2019); https://doi.org/10.1039/C8CS00664D
  9. N. Loudjani, N. Bensebaa, S. Alleg, C. Djebbari, and J. M. Greneche, physica status solidi (a), 208, No. 9: 2124 (2011); https://doi.org/10.1002/PSSA.201026723
  10. X. Zhang, Y. Li, Y. Guo, A. Hu, M. Li, T. Hang, and H. Ling, International Journal of Hydrogen Energy, 44, No. 57: 29946 (2019); https://doi.org/10.1016/J.IJHYDENE.2019.09.193
  11. H. Raanaei, M. Rahimi, and V. Mohammad-Hosseini, Journal of Magnetism and Magnetic Materials, 508: 0166870 (2020); https://doi.org/10.1016/J.JMMM.2020.166870
  12. T. ?im?ek, ?. Akg?l, ?. G?ler, I. ?zkul, B. Avar, A. K. Chattopadhyay, C. A. Canbay, and S. H. G?ler, Materials Today Communications, 29: 102986 (2021); https://doi.org/10.1016/J.MTCOMM.2021.102986
  13. R. R. Shahi and R. K. Mishra, High Entropy Alloys (CRC Press: 2020); https://doi.org/10.1201/9780367374426-22
  14. M. Triki, H. Mechri, H. Azzaz, and M. Azzaz, Journal of Magnetism and Magnetic Materials, 541: 168514 (2022); https://doi.org/10.1016/j.jmmm.2021.168514
  15. J. Schilz, M. Riffel, K. Pixius, and H. J. Meyer, Powder Technology, 105, Nos. 1–3: 149 (1999); https://doi.org/10.1016/S0032-5910(99)00130-8
  16. A. Abuchenari and M. Moradi, Journal of Composites and Compounds, 1, No. 1: 10 (2019); https://doi.org/10.29252/JCC.1.1.2
  17. I. Constantinides, M. Gritsch, A. Adriaens, H. Hutter, and F. Adams, Analytica Chimica Acta, 440, No. 2: 189 (2001); https://doi.org/10.1016/S0003-2670(01)01061-3
  18. T. Gouasmia, N. Loudjani, M. Boulkra, M. Benchiheub, K. Belakroum, and M. Bououdina, Applied Physics A, 128, No. 10: 935 (2022); https://doi.org/10.1007/s00339-022-06074-y
  19. T. Ramkumar, M. Selvakumar, R. Vasanthsankar, A. S. Sathishkumar, P. Narayanasamy, and G. Girija, Journal of Magnesium and Alloys, 6, No. 4: 390 (2018); https://doi.org/10.1016/J.JMA.2018.08.002
  20. D. L. Bish and J. E. Post, American Mineralogist, 78, Nos. 9–10: 932 (1993).
  21. S. Verma, S. Rani, S. Kumar, and M. A. M. Khan, Ceramics International, 44, No. 2: 1653 (2018); https://doi.org/10.1016/J.CERAMINT.2017.10.090
  22. P. Tandon, R. Sahu, and A. Mishra, Journal of Materials Science, 57, No. 41: 19631 (2022); https://doi.org/10.1007/s10853-022-07808-2
  23. M. Hossain, B. Qin, B. Li, and X. Duan, Nano Today, 42: 101338 (2022); https://doi.org/10.1016/j.nantod.2021.101338
  24. Z. Hedayatnasab, F. Abnisa, and W. M. A. Wan Daud, Materials & Design, 123: 174 (2017); https://doi.org/10.1016/J.MATDES.2017.03.036
  25. J. Fidler and T. Schrefl, Journal of Physics D: Applied Physics, 33, No. 15: R135 (2000); https://doi.org/10.1088/0022-3727/33/15/201
  26. X. Fang, G. Jin, X. Cui, and J.-N. Liu, Surface and Coatings Technology, 305: 208 (2016); https://doi.org/10.1016/J.SURFCOAT.2016.08.042
  27. A. L. Ortiz, J. W. Tian, J. C. Villegas, L. L. Shaw, and P. K. Liaw, Acta Materialia, 56, No. 3: 413 (2008); https://doi.org/10.1016/J.ACTAMAT.2007.10.003
  28. Y. Xu, Y. Sun, X. Dai, B. Liao, S. Zhou, and D. Chen, Journal of Materials Research and Technology, 8, No. 3: 2486 (2019); https://doi.org/10.1016/J.JMRT.2019.02.007
  29. M. D. Chermahini, M. Zandrahimi, H. Shokrollahi, and S. Sharafi, Journal of Alloys and Compounds, 477, Nos. 1–2: 45 (2009); https://doi.org/10.1016/J.JALLCOM.2008.10.163
  30. R. Hamzaoui, S. Guessasma, O. Elkedim, and E. Gaffet, Materials Science and Engineering: B, 119, No. 2: 164 (2005); https://doi.org/10.1016/J.MSEB.2005.02.049
  31. X. Amils, J. Nogu?s, S. Suri?ach, and M. D. Bar?, Journal of Magnetism and Magnetic Materials, 203, Nos. 1–3: 129 (1999); https://doi.org/10.1016/S0304-8853(99)00211-5
  32. J. J. Su?ol, A. Gonz?lez, J. Saurina, L. Escoda, and L. Fern?ndez Barqu?n, Journal of Non-Crystalline Solids, 353, Nos. 8–10: 865 (2007); https://doi.org/10.1016/J.JNONCRYSOL.2006.12.108
  33. William Hopkins, The Davenport Electric Motor: A Look at How the First Electric Motor Can Teach the Fundamentals of Magnetism and Motion (Ed. John A. Goulet) (Worcester Polytechnic Institute: 2022).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement