Issues

 / 

2024

 / 

vol. 22 / 

issue 4

 



Download the full version of the article (in PDF format)

À.Ì. KASUMOV, À.I. DMITRIEV, K.A. KOROTKOV, V.M. KARAVAIEVA, and A.I. IEVTUSHENKO

The Estimating Method for the Enhancement of the Magnetization in the Fe/Gd2O3 Nanostructure Resulting from the f–d-Exchange Interaction
785–791 (2024)

PACS numbers: 68.37.Hk, 73.40.Gk, 73.43.Qt, 75.47.-m, 75.50.Tt, 75.70.-i, 81.40.Rs

The tunnelling magnetoresistance (TMR) effect in Fe/Gd2O3 nanostructure consisting of Fe island film deposited on Gd2O3 layer is investigated. In Fe, Co, Ni/rare earth metals (REM) oxide nanostructures, an exchange f–d interaction occurs in the region of their interface due to wave-functions’ hybridization of f- and d-electrons with unfilled shells. This leads to an additional magnetization Mf–d and effective magnetic field Hf–d corresponding to it. The practical value of this enhancement of magnetic properties is that it is achieved in a nanoscale volume without the use of energy or amplification devices. For nanotechnology applications, this fact is important. A method is proposed to determine Hf–d and Mf–d based on the study of TMR(H) dependence, information about which is lacking. The hybridization propagation region in the Fe/Gd2O3 structure is shown to extend at least 70 nm deep in the REM oxide layer

KEY WORDS: tunnelling magnetoresistance, Fe, rare earth metals’ oxide, exchange f–d interaction

DOI:  https://doi.org/10.15407/nnn.22.04.785

REFERENCES
  1. A. M. Kasumov, A. I. Dmitriev, K. A. Korotkov, V. M Karavaeva, K. O. Vyshnevska, and A. I. Ievtushenko, Chemistry, Physics and Technology of Surface, 13, No. 4: 434 (2022); https://doi.org/10.15407/hftp13.04.434
  2. A. M. Kasumov, A. I. Dmitriev, M. V. Radchenko, A. E. Baybara, O. I. Bykov, K. A. Korotkov, V. M. Karavaeva, K. O. Vyshnevska, O. I. Olifan, and A. I. Ievtushenko, Chemistry, Physics and Technology of Surface, 13, No. 1: 105 (2022); https://doi.org/10.15407/hftp13.01.105
  3. A. M. Kasumov, V. M. Karavaeva, A. A. Mikitchenko, K. O. Shapoval, M. A. Perepelitsa, and G. V. Lashkarev, Powder Metall Met. Ceram., 57: 325 (2018); https://doi.org/10.1007/s11106-018-9985-x
  4. A. M. Kasumov, V. M. Karavayeva, K. O. Shapoval, and G. V. Lashkarov, Nanosistemi, Nanomateriali, Nanotehnologii, 16, Iss. 1: 181 (2018); https://doi.org/10.15407/nnn.16.01.181
  5. A. M. Kasumov, A. I. Dmitriev, Yu. M. Bataiev, M. M. Bataiev, V. M. Karavaeva, and K. A. Korotkov, A. I. Ievtushenko, Chemistry, Physics and Technology of Surface, 12, No. 2: 144 (2021); https://doi.org/10.15407/hftp12.02.144
  6. A. M. Kasumov, A. I. Dmitriev, Yu. M. Bataiev, M. M. Bataiev, V. M. Karavaeva, K. A. Korotkov, and A. I. Ievtushenko, Chemistry, Physics and Technology of Surface, 12, No. 2: 144 (2021); https://doi.org/10.15407/hftp12.02.144
  7. G. V. Samsonov, Handbook of the Physicochemical Properties of the Elements (New York: Springer: 1968); https://doi.org/10.1007/978-1-4684-6066-7
  8. G. T. Trammell, Phys. Rev., 131: 932 (1963); https://doi.org/10.1103/PhysRev.131.932
  9. J. S. Moodera and G. Mathon, J. Magn. Magn. Mater., 200, Nos. 1–3: 248 (1999); https://doi.org/10.1016/S0304-8853(99)00515-6
  10. Powder Diffraction Files (PDF [06-0696]). Powder Diffraction FileTM (PDF®) Search; https://www.icdd.com/pdfsearch/
  11. Powder Diffraction Files (PDF [19-629]). Powder Diffraction FileTM (PDF®) Search; https://www.icdd.com/pdfsearch/
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement