Download the full
version of the article (in PDF format)
À.Ì. KASUMOV, À.I. DMITRIEV, K.A. KOROTKOV, V.M. KARAVAIEVA, and
A.I. IEVTUSHENKO
The Estimating Method for the Enhancement of the
Magnetization in the Fe/Gd2O3 Nanostructure Resulting from the f–d-Exchange
Interaction
785–791 (2024)
PACS numbers: 68.37.Hk, 73.40.Gk, 73.43.Qt, 75.47.-m, 75.50.Tt, 75.70.-i, 81.40.Rs
The tunnelling magnetoresistance (TMR) effect in Fe/Gd2O3 nanostructure consisting of Fe
island film deposited on Gd2O3 layer is investigated. In Fe, Co, Ni/rare earth metals (REM) oxide
nanostructures, an exchange f–d interaction occurs in the region of their interface due to wave-functions’
hybridization of f- and d-electrons with unfilled shells. This leads to an additional magnetization Mf–d and
effective magnetic field Hf–d corresponding to it. The practical value of this enhancement of magnetic
properties is that it is achieved in a nanoscale volume without the use of energy or amplification devices.
For nanotechnology applications, this fact is important. A method is proposed to determine Hf–d and Mf–d
based on the study of TMR(H) dependence, information about which is lacking. The hybridization propagation
region in the Fe/Gd2O3 structure is shown to extend at least 70 nm deep in the REM oxide layer
KEY WORDS: tunnelling magnetoresistance, Fe, rare earth metals’ oxide, exchange f–d interaction
DOI: https://doi.org/10.15407/nnn.22.04.785
REFERENCES
- A. M. Kasumov, A. I. Dmitriev, K. A. Korotkov, V. M Karavaeva, K. O. Vyshnevska, and A. I. Ievtushenko, Chemistry, Physics and Technology of Surface, 13, No. 4: 434 (2022); https://doi.org/10.15407/hftp13.04.434
- A. M. Kasumov, A. I. Dmitriev, M. V. Radchenko, A. E. Baybara, O. I. Bykov, K. A. Korotkov, V. M. Karavaeva, K. O. Vyshnevska, O. I. Olifan, and A. I. Ievtushenko, Chemistry, Physics and Technology of Surface, 13, No. 1: 105 (2022); https://doi.org/10.15407/hftp13.01.105
- A. M. Kasumov, V. M. Karavaeva, A. A. Mikitchenko, K. O. Shapoval, M. A. Perepelitsa, and G. V. Lashkarev, Powder Metall Met. Ceram., 57: 325 (2018); https://doi.org/10.1007/s11106-018-9985-x
- A. M. Kasumov, V. M. Karavayeva, K. O. Shapoval, and G. V. Lashkarov, Nanosistemi, Nanomateriali, Nanotehnologii, 16, Iss. 1: 181 (2018); https://doi.org/10.15407/nnn.16.01.181
- A. M. Kasumov, A. I. Dmitriev, Yu. M. Bataiev, M. M. Bataiev, V. M. Karavaeva, and K. A. Korotkov, A. I. Ievtushenko, Chemistry, Physics and Technology of Surface, 12, No. 2: 144 (2021); https://doi.org/10.15407/hftp12.02.144
- A. M. Kasumov, A. I. Dmitriev, Yu. M. Bataiev, M. M. Bataiev, V. M. Karavaeva, K. A. Korotkov, and A. I. Ievtushenko, Chemistry, Physics and Technology of Surface, 12, No. 2: 144 (2021); https://doi.org/10.15407/hftp12.02.144
- G. V. Samsonov, Handbook of the Physicochemical Properties of the Elements (New York: Springer: 1968); https://doi.org/10.1007/978-1-4684-6066-7
- G. T. Trammell, Phys. Rev., 131: 932 (1963); https://doi.org/10.1103/PhysRev.131.932
- J. S. Moodera and G. Mathon, J. Magn. Magn. Mater., 200, Nos. 1–3: 248 (1999); https://doi.org/10.1016/S0304-8853(99)00515-6
- Powder Diffraction Files (PDF [06-0696]). Powder Diffraction FileTM (PDF®) Search; https://www.icdd.com/pdfsearch/
- Powder Diffraction Files (PDF [19-629]). Powder Diffraction FileTM (PDF®) Search; https://www.icdd.com/pdfsearch/
|