Download the full
version of the article (in PDF format)
NUHAD SAAD and ORAAS ADNAN
Low-Cost TiO2/MWCNT/Ag Dye-Sensitized
Solar Cell Based on Polypyrrole/SDS Counter Electrode
739–768 (2024)
PACS numbers: 68.37.Hk, 68.37.Ps, 68.37.Vj, 73.50.Pz, 78.30.Na, 81.07.-b, 88.40.hj
In this study, titanium dioxide/multiwall carbon nanotube and silver nanoparticles
(TiO2/MWCNTs/Ag) nanocomposite is employed as photoanode incorporated with polypyrrole/sodium dodecyl
sulphate (PPy + SDS) counter electrode 1 (C1) and polypyrrole/sodium dodecyl sulphate/multiwall carbon
nanotube (PPy + SDS + MWCNT) counter electrode 2 (C2) as low-cost counter electrodes compared with a
platinum counter electrode to construct dye-sensitized solar cells (DSSCs) using Ru-based dyes Z907,
pomegranate dye, arugula dye, and hibiscus dye as a photosensitized one. The working electrode composite is
deposited on a transparent-conducting F:SnO2 (FTO) glass substrate by a thermal chemical spraying technique
and, then, anchored with dyes, while the counter electrodes are prepared by the electropolymerization
method. The structural and optical properties and interconnectivity of the materials within the composite
are investigated thoroughly through various characterization techniques x-ray diffraction (XRD), Raman
scattering, field-emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). Finally,
the photovoltaic performances of the assembled DSSCs are tested under photoirradiation (100 mW/cm2). The
measured current–voltage (I–V) curve shows that the efficiency of DSSCs in the case of Z907 dye with C1 and
C2 is of 2.537% and 2.453%, respectively, compared with the reference cell based on the Pt counter
electrode, which has an efficiency of 3.57%, that indicates a good efficiency of the low-cost prepared
DSSCs. The natural dyes exhibit a moderate efficiency ranging from 1.44–0.53%
KEY WORDS: TiO2, silver nanoparticles, MWCNT, Z907, SDS, PPy,
dye-sensitized solar cell
DOI: https://doi.org/10.15407/nnn.22.03.739
REFERENCES
- B. O’regan and M. Gr?tzel, Nature, 353, Iss. 6346: 737 (1991); doi:10.1038/353737a0
- N. Gokilamani, N. Muthukumarasamy, M. Thambidurai, A. Ranjitha, and D. Velauthapillai, J. Sol–Gel Sci. Technol., 66, Iss. 2: 212 (2013); doi:10.1007/s10971-013-2994-9
- N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero, and G. Sberveglieri, Angewandte Chemie, 123, Iss. 51: 12529 (2011); https://doi.org/10.1002/ange.201104605
- R. Bart, P. Sandeep, and S. Ullrich, Chemical Society Reviews, 44, Iss. 22: 8326 (2015); https://doi.org/10.1039/C5CS00352K
- H. J. Hwang and H. S. Kim, Journal of Composite Materials, 48, Iss. 14: 1679 (2014); doi:10.1177/0021998313490215
- C. Hyonkwang, K. Hyunkook, H. Sookhyun, H. Youngmoon, and J. Minhyon, J. Mater. Chem., 21, Iss. 21: 7548 (2011); https://doi.org/10.1039/C1JM11145K
- G. Feng, W. Hong, X. Xin, Z. Gang, and W. Zhong-Sheng, J. Am. Chem. Soc., 134, Iss. 26: 10953 (2012); doi:10.1021/ja303034w
- J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, and S. Hao, J. Power Sources, 181, Iss. 1: 172 (2008); https://doi.org/10.1016/j.jpowsour.2008.03.029
- T. C. T. Thanh, P. J. Young, L. S. Woo, S. Thogiti, and K. J. Hong, J. Nanosci. Nanotechnol., 16, Iss. 5: 5263 (2016); https://doi.org/10.1166/jnn.2016.12266
- K. B. Erande, P. Y. Hawaldar, S. R. Suryawanshi, B. M. Babar, A. A. Mohite, H. D. Shelke, S. V. Nipane, and U. T. Pawar, Materials Today, 43, Iss. 4: 2716 (2021); https://doi.org/10.1016/j.matpr.2020.06.357
- R. F. Mansa, G. Govindasamy, Y. Y. Farm, H. Abu Bakar, J. Dayou, and C. S. Sipaut, Journal of Physical Science, 25, Iss. 2: 85 (2014);
- S. A. Taya, T. M. El-Agez, H. S. El-Ghamri, and M. S. Abdel-Latif, International Journal of Materials Science and Applications, 2, Iss. 2: 37 (2013); doi:10.11648/j.ijmsa.20130202.11
- L. Chun Hung, S. Ryan, and C. B. O’Regan, Journal of Materials Chemistry A, 1, Iss. 45: 14154 (2013); https://doi.org/10.1039/C3TA13145A
- Md. H. Miah and S. Miah, Asian Journal of Applied Sciences, 3, Iss. 4: 806 (2015).
- Sung Ho Song, Ho-Kyun Jeong, Yong-Gu Kang, and Choon-Tack Cho, Polymer (Korea), 34, Iss. 2: 108 (2010); doi:10.7317/pk.2010.34.2.108
- K. R. Gota and S. Suresh, Asian Journal of Chemistry, 26, Iss. 21: 7087 (2014); doi:10.14233/ajchem.2014.17142
- R. S. Dubey, K. V. Krishnamurthy, and S. Singh, Results in Physics, 14: 102390 (2019); https://doi.org/10.1016/j.rinp.2019.102390
- B. Ajitha, Y. A. K. Reddy, and R. P. Sreedhara, Molecular and Biomolecular Spectroscopy, 121: 164 (2014); doi:10.1016/j.saa.2013.10.077
- Y. D. Guang, Z. B. Y. W. Li, and Qian, International Journal of Nanomedicine, 6: 3271 (2011); https://doi.org/10.2147/IJN.S27468
- H. Vijeth, K. S. P. Ashok, L. Yesappa, M. Niranjana, M. Vandana, and H. Devendrappa, AIP Conference Proceedings, 2142, Iss. 1: 150029 (2019); https://doi.org/10.1063/1.5122578
- M. A. Rashed, M. Faisal, M. Alsaiari, S. A. Alsareii, and F. A. Harraz, Electrocatalysis, 12: 650 (2021); https://doi.org/10.1007/s12678-021-00675-6
- R. M. Mohammad, S. A. Duha, and A. K. M. Mustafa, Journal of Sol–Gel Science and Technology, 90: 498 (2019); doi:10.1007/s10971-019-04973-w
- H. Rhee et al., Synthetic Metals, 28, Iss. 1–2: 605 (1989).
- S. Hiroshi, O. Kentaro, K. Daisuke, D. Bhavana, S. Usha, and N. Tsutomu, Journal of the Electrochemical Society, 150, Iss. 5: H119 (2003); doi:10.1149/1.1566420
- Yang Zhao, Yue Hu, Yan Li, Han Zhang, Shaowen Zhang, Liangti Qu, Gaoquan Shi, and Liming Dai, Nanotechnology, 21, Iss. 50: 505702 (2010); doi:10.1088/0957-4484/21/50/505702
- P. P. Lottici, D. Bersani, M. Braghini and A. Montenero, Journal of Materials Science, 28, Iss. 1: 177 (1993); doi:10.1007/bf00349049
- N. K. Konstantin, O. Bulent, C. S. Hannes, K. P. Robert, A. A. Ilhan, and C. Roberto, Nano Letters, 8, Iss. 1: 36 (2008); https://doi.org/10.1021/nl071822y
- H. Chang, H.T. Jung, C. Tien-Li, H. K. David, J.C. Song and C. S. Hua, Materials Transactions, 50, Iss. 12: 2879 (2009); https://doi.org/10.2320/matertrans.M2009203
- Y. Furukawa, S. Tazawa, Y. Fujii, and I. Harada, Synthetic Metals, 24, Iss. 4: 329 (1988); https://doi.org/10.1016/0379-6779(88)90309-8
- D. C. Sophie and S. P. Yves, Chemistry of Materials, 11, Iss. 3: 829 (1999); https://doi.org/10.1021/cm9807541
- C. D. Chouvy and T. T. M. Tran, Electrochemistry Communications, 10, Iss. 6: 947 (2008); https://doi.org/10.1016/j.elecom.2008.04.024
- H. Hiura, T. W. Ebbesen, K. Tanigaki, and H. Takahashi, Chemical Physics Letters, 202, Iss. 6: 509 (1993); https://doi.org/10.1016/0009-2614(93)90040-8
- R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chemical Physics Letters, 209, Iss. 1–2: 77 (1993); https://doi.org/10.1016/0009-2614(93)87205-H
- M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Letters, 3, Iss. 2: 269 (2003); https://doi.org/10.1021/nl025924u
- W. C. Oh and M. L. Chen, Chemical Society, 29, Iss. 1: 159 (2008); doi:10.5012/bkcs.2008.29.1.159
- K. Youngmi, L. Ginaya; C. Boyce, Y. Yeoheung, N. S. Vesselin, S. Mark, P. Devdas, and S. Jagannathan, Composites Part B: Engineering, 57: 105 (2014); https://doi.org/10.1016/j.compositesb.2013.09.004
- C. Ling-Yu, L. Chun-Ting, L. Yu-Yan, L. Chuan-Pei, Y. Min-Hsin, H. Kuo-Chuan, and L. Jiang-Jen, Electrochimica Acta, 155: 263 (2015); https://doi.org/10.1016/j.electacta.2014.12.127
- S. V. Ahmad, M. M. Ghasem, and J. Majid, Synthetic Metals, 191: 104 (2014); https://doi.org/10.1016/j.synthmet.2014.02.021
- L. Woranan, K. T. Chyuan, S. Chaochin, S. Pedaballi, K. Sasipriya, L. Ya-Fen, C. Bo-Ren, and L. Wen-Ren, Solar Energy, 142: 1 (2017); https://doi.org/10.1016/j.solener.2016.12.017
- I. M. V. Ana, G. G. Emilio, J. A. Mar?a, and J. G. S. Mar?a, Solar Energy, 91: 263 (2013); https://doi.org/10.1016/j.solener.2013.02.009
- C. Sadik, E. E. Sule, Ali, A. A. Khalaf, C. C. Gamze, M. Matej, O. Maria, and U. O. Aysegul, Research on Chemical Intermediates, 44: 3325 (2018); doi:10.1007/s11164-018-3309-0
- S. Thogiti, T. T. C. Thi, K. J. Yoon, Y. E. Joo, A. K. Soon, B. Y. Shin, L. S. Woo, and K. J. Hong, Molecular Crystals and Liquid Crystals, 620, Iss. 1: 71 (2015); https://doi.org/10.1080/15421406.2015.1094870
- S. Napisah, J. Aidah, J. Mohammad, and K. Anish, Polymers, 12, Iss. 11: 2522 (2020); https://doi.org/10.3390/polym12112522
- X. Zhang, J. Zhang, R. Wang, T. Zhu, and Z. Liu, Chem. Phys. Chem., 5, Iss. 7: 998 (2004); https://doi.org/10.1002/cphc.200301217
- S. Z. Yao and M. T. Lee, Materials, 10, Iss. 5: 555 (2017); doi:10.3390/ma10050555
- S. Dandan, C. Peng, W. Tianyue, X. Bixia, J. Yongjian, L. Meicheng, L. Yaoyao, D. Sheng, H. Yue, L. Zhuohai, and M. J. Michel, Nano Energy, 23: 122 (2016); https://doi.org/10.1016/j.nanoen.2016.03.006
- K. Sharma, V. Sharma, and S. S. Sharma, Nanoscale Res. Lett., 13: 381 (2018); https://doi.org/10.1186/s11671-018-2760-6
- P. Dhanasekaran and R. Marimuthu, Frontiers in Energy Research, 10: 1 (2023); https://doi.org/10.3389/fenrg.2022.998038
- D. Kumar, Engineering Research Express, 3, Iss. 4: 042004 (2021); doi:10.1088/2631-8695/ac3b29
- C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, and K. J. Chee, Nanyang Technological University, 26, Iss. 13: 1950 (2014); https://doi.org/10.1002/adma.201470083
- M. Mujahid, M. Ahmad and O. A. Al-Hartomy, Optoelectronics and Advanced Materials-Rapid Communications, 16, Iss. 9–10: 464 (2022).
- S. Mohanty, S. K. Nayak, B. S. Kaith, and S. Kalia, Polymer Nanocomposites based on Inorganic and Organic Nanomaterials, 89 (2015); https://doi.org/10.1002/9781119179108.ch4
- Q. Zhou, J. Qiu, Y. Wang, M. Yu, J. Liu, and X. Zhang, ACS Energy Letters, 6, Iss. 4: 1596 (2021); https://doi.org/10.1021/acsenergylett.1c00291
- H. Monalisa and M. A. Kumar, Journal of Materials Science: Materials in Electronics, 30: 4792 (2019); doi:10.1007/s10854-019-00773-8
- C. Ziyi, X. Guoxin, H. Feng, W. Weiqi, G. Dan, and W. Wei, Advanced Materials Interfaces, 4, Iss. 23: 1700998 (2017); https://doi.org/10.1002/admi.201700998
- L. Jianneng, C. Dachang, A. Keegan, S. Qian, H. N. Graham, Z. Yang, S. Yipeng, L. Jing, L. Ruying, Z. Li, Z. Shangqian, L. Shigang, H. Huan, Z. Xiaoxing, S. C. Veer, and S. Xueliang, Advanced Energy Materials, 11, Iss. 1: 2002455 (2021); https://doi.org/10.1002/aenm.202002455
- J. C. R. Morales, D. M. L?pez, M. G. S?nchez, J. C. V?zquez, C. Savaniud, and S. N. Savvina, Energy & Environmental Science, 3, Iss. 11: 1670 (2010); https://doi.org/10.1039/C0EE00166J
- Yiding Song, Nan Wang, Yuanhao Wang, Renyun Zhang, H?kan Olin, and Ya Yan, Advanced Energy Materials, 10, Iss. 45: 2002756 (2020); https://doi.org/10.1002/aenm.202002756
- S. P. Wulan, Y. D. Kusuma, and D. A. Handrini, AIP Conference Proceedings, 1755, Iss. 1: 160003 (2016); doi:10.1063/1.4958596
- N. Gokilamani, N. Muthukumarasamy, M. Thambidurai, A. Ranjitha, V. Dhayalan, T. S. Senthil, and R. Balasundaraprabhu, Journal of Materials Science: Materials in Electronics, 24, Iss. 9: 3394 (2013); doi:10.1007/s10854-013-1261-8
- A. Arunachalam, S. Govindan, and S. Vadivel, Subramanian and Balasubramanian, Materials in Electronics, 28: 18455 (2017); doi:10.1007/s10854-017-7792-7
- A. Br?ger, G. Fafilek, and M. N. Spallart, Solar Energy, 205: 74 (2020); https://doi.org/10.1016/j.solener.2020.05.035
- H. Masuda, Y. Ohta, and M. Kitayama, Journal of Materials Science and Chemical Engineering, 7, Iss. 02: 1 (2019); doi:10.4236/msce.2019.72001
|