Issues

 / 

2024

 / 

vol. 22 / 

issue 3

 



Download the full version of the article (in PDF format)

NUHAD SAAD and ORAAS ADNAN

Low-Cost TiO2/MWCNT/Ag Dye-Sensitized Solar Cell Based on Polypyrrole/SDS Counter Electrode
739–768 (2024)

PACS numbers: 68.37.Hk, 68.37.Ps, 68.37.Vj, 73.50.Pz, 78.30.Na, 81.07.-b, 88.40.hj

In this study, titanium dioxide/multiwall carbon nanotube and silver nanoparticles (TiO2/MWCNTs/Ag) nanocomposite is employed as photoanode incorporated with polypyrrole/sodium dodecyl sulphate (PPy + SDS) counter electrode 1 (C1) and polypyrrole/sodium dodecyl sulphate/multiwall carbon nanotube (PPy + SDS + MWCNT) counter electrode 2 (C2) as low-cost counter electrodes compared with a platinum counter electrode to construct dye-sensitized solar cells (DSSCs) using Ru-based dyes Z907, pomegranate dye, arugula dye, and hibiscus dye as a photosensitized one. The working electrode composite is deposited on a transparent-conducting F:SnO2 (FTO) glass substrate by a thermal chemical spraying technique and, then, anchored with dyes, while the counter electrodes are prepared by the electropolymerization method. The structural and optical properties and interconnectivity of the materials within the composite are investigated thoroughly through various characterization techniques x-ray diffraction (XRD), Raman scattering, field-emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). Finally, the photovoltaic performances of the assembled DSSCs are tested under photoirradiation (100 mW/cm2). The measured current–voltage (I–V) curve shows that the efficiency of DSSCs in the case of Z907 dye with C1 and C2 is of 2.537% and 2.453%, respectively, compared with the reference cell based on the Pt counter electrode, which has an efficiency of 3.57%, that indicates a good efficiency of the low-cost prepared DSSCs. The natural dyes exhibit a moderate efficiency ranging from 1.44–0.53%

KEY WORDS: TiO2, silver nanoparticles, MWCNT, Z907, SDS, PPy, dye-sensitized solar cell

DOI:  https://doi.org/10.15407/nnn.22.03.739

REFERENCES
  1. B. O’regan and M. Gr?tzel, Nature, 353, Iss. 6346: 737 (1991); doi:10.1038/353737a0
  2. N. Gokilamani, N. Muthukumarasamy, M. Thambidurai, A. Ranjitha, and D. Velauthapillai, J. Sol–Gel Sci. Technol., 66, Iss. 2: 212 (2013); doi:10.1007/s10971-013-2994-9
  3. N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero, and G. Sberveglieri, Angewandte Chemie, 123, Iss. 51: 12529 (2011); https://doi.org/10.1002/ange.201104605
  4. R. Bart, P. Sandeep, and S. Ullrich, Chemical Society Reviews, 44, Iss. 22: 8326 (2015); https://doi.org/10.1039/C5CS00352K
  5. H. J. Hwang and H. S. Kim, Journal of Composite Materials, 48, Iss. 14: 1679 (2014); doi:10.1177/0021998313490215
  6. C. Hyonkwang, K. Hyunkook, H. Sookhyun, H. Youngmoon, and J. Minhyon, J. Mater. Chem., 21, Iss. 21: 7548 (2011); https://doi.org/10.1039/C1JM11145K
  7. G. Feng, W. Hong, X. Xin, Z. Gang, and W. Zhong-Sheng, J. Am. Chem. Soc., 134, Iss. 26: 10953 (2012); doi:10.1021/ja303034w
  8. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, and S. Hao, J. Power Sources, 181, Iss. 1: 172 (2008); https://doi.org/10.1016/j.jpowsour.2008.03.029
  9. T. C. T. Thanh, P. J. Young, L. S. Woo, S. Thogiti, and K. J. Hong, J. Nanosci. Nanotechnol., 16, Iss. 5: 5263 (2016); https://doi.org/10.1166/jnn.2016.12266
  10. K. B. Erande, P. Y. Hawaldar, S. R. Suryawanshi, B. M. Babar, A. A. Mohite, H. D. Shelke, S. V. Nipane, and U. T. Pawar, Materials Today, 43, Iss. 4: 2716 (2021); https://doi.org/10.1016/j.matpr.2020.06.357
  11. R. F. Mansa, G. Govindasamy, Y. Y. Farm, H. Abu Bakar, J. Dayou, and C. S. Sipaut, Journal of Physical Science, 25, Iss. 2: 85 (2014);
  12. S. A. Taya, T. M. El-Agez, H. S. El-Ghamri, and M. S. Abdel-Latif, International Journal of Materials Science and Applications, 2, Iss. 2: 37 (2013); doi:10.11648/j.ijmsa.20130202.11
  13. L. Chun Hung, S. Ryan, and C. B. O’Regan, Journal of Materials Chemistry A, 1, Iss. 45: 14154 (2013); https://doi.org/10.1039/C3TA13145A
  14. Md. H. Miah and S. Miah, Asian Journal of Applied Sciences, 3, Iss. 4: 806 (2015).
  15. Sung Ho Song, Ho-Kyun Jeong, Yong-Gu Kang, and Choon-Tack Cho, Polymer (Korea), 34, Iss. 2: 108 (2010); doi:10.7317/pk.2010.34.2.108
  16. K. R. Gota and S. Suresh, Asian Journal of Chemistry, 26, Iss. 21: 7087 (2014); doi:10.14233/ajchem.2014.17142
  17. R. S. Dubey, K. V. Krishnamurthy, and S. Singh, Results in Physics, 14: 102390 (2019); https://doi.org/10.1016/j.rinp.2019.102390
  18. B. Ajitha, Y. A. K. Reddy, and R. P. Sreedhara, Molecular and Biomolecular Spectroscopy, 121: 164 (2014); doi:10.1016/j.saa.2013.10.077
  19. Y. D. Guang, Z. B. Y. W. Li, and Qian, International Journal of Nanomedicine, 6: 3271 (2011); https://doi.org/10.2147/IJN.S27468
  20. H. Vijeth, K. S. P. Ashok, L. Yesappa, M. Niranjana, M. Vandana, and H. Devendrappa, AIP Conference Proceedings, 2142, Iss. 1: 150029 (2019); https://doi.org/10.1063/1.5122578
  21. M. A. Rashed, M. Faisal, M. Alsaiari, S. A. Alsareii, and F. A. Harraz, Electrocatalysis, 12: 650 (2021); https://doi.org/10.1007/s12678-021-00675-6
  22. R. M. Mohammad, S. A. Duha, and A. K. M. Mustafa, Journal of Sol–Gel Science and Technology, 90: 498 (2019); doi:10.1007/s10971-019-04973-w
  23. H. Rhee et al., Synthetic Metals, 28, Iss. 1–2: 605 (1989).
  24. S. Hiroshi, O. Kentaro, K. Daisuke, D. Bhavana, S. Usha, and N. Tsutomu, Journal of the Electrochemical Society, 150, Iss. 5: H119 (2003); doi:10.1149/1.1566420
  25. Yang Zhao, Yue Hu, Yan Li, Han Zhang, Shaowen Zhang, Liangti Qu, Gaoquan Shi, and Liming Dai, Nanotechnology, 21, Iss. 50: 505702 (2010); doi:10.1088/0957-4484/21/50/505702
  26. P. P. Lottici, D. Bersani, M. Braghini and A. Montenero, Journal of Materials Science, 28, Iss. 1: 177 (1993); doi:10.1007/bf00349049
  27. N. K. Konstantin, O. Bulent, C. S. Hannes, K. P. Robert, A. A. Ilhan, and C. Roberto, Nano Letters, 8, Iss. 1: 36 (2008); https://doi.org/10.1021/nl071822y
  28. H. Chang, H.T. Jung, C. Tien-Li, H. K. David, J.C. Song and C. S. Hua, Materials Transactions, 50, Iss. 12: 2879 (2009); https://doi.org/10.2320/matertrans.M2009203
  29. Y. Furukawa, S. Tazawa, Y. Fujii, and I. Harada, Synthetic Metals, 24, Iss. 4: 329 (1988); https://doi.org/10.1016/0379-6779(88)90309-8
  30. D. C. Sophie and S. P. Yves, Chemistry of Materials, 11, Iss. 3: 829 (1999); https://doi.org/10.1021/cm9807541
  31. C. D. Chouvy and T. T. M. Tran, Electrochemistry Communications, 10, Iss. 6: 947 (2008); https://doi.org/10.1016/j.elecom.2008.04.024
  32. H. Hiura, T. W. Ebbesen, K. Tanigaki, and H. Takahashi, Chemical Physics Letters, 202, Iss. 6: 509 (1993); https://doi.org/10.1016/0009-2614(93)90040-8
  33. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chemical Physics Letters, 209, Iss. 1–2: 77 (1993); https://doi.org/10.1016/0009-2614(93)87205-H
  34. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Letters, 3, Iss. 2: 269 (2003); https://doi.org/10.1021/nl025924u
  35. W. C. Oh and M. L. Chen, Chemical Society, 29, Iss. 1: 159 (2008); doi:10.5012/bkcs.2008.29.1.159
  36. K. Youngmi, L. Ginaya; C. Boyce, Y. Yeoheung, N. S. Vesselin, S. Mark, P. Devdas, and S. Jagannathan, Composites Part B: Engineering, 57: 105 (2014); https://doi.org/10.1016/j.compositesb.2013.09.004
  37. C. Ling-Yu, L. Chun-Ting, L. Yu-Yan, L. Chuan-Pei, Y. Min-Hsin, H. Kuo-Chuan, and L. Jiang-Jen, Electrochimica Acta, 155: 263 (2015); https://doi.org/10.1016/j.electacta.2014.12.127
  38. S. V. Ahmad, M. M. Ghasem, and J. Majid, Synthetic Metals, 191: 104 (2014); https://doi.org/10.1016/j.synthmet.2014.02.021
  39. L. Woranan, K. T. Chyuan, S. Chaochin, S. Pedaballi, K. Sasipriya, L. Ya-Fen, C. Bo-Ren, and L. Wen-Ren, Solar Energy, 142: 1 (2017); https://doi.org/10.1016/j.solener.2016.12.017
  40. I. M. V. Ana, G. G. Emilio, J. A. Mar?a, and J. G. S. Mar?a, Solar Energy, 91: 263 (2013); https://doi.org/10.1016/j.solener.2013.02.009
  41. C. Sadik, E. E. Sule, Ali, A. A. Khalaf, C. C. Gamze, M. Matej, O. Maria, and U. O. Aysegul, Research on Chemical Intermediates, 44: 3325 (2018); doi:10.1007/s11164-018-3309-0
  42. S. Thogiti, T. T. C. Thi, K. J. Yoon, Y. E. Joo, A. K. Soon, B. Y. Shin, L. S. Woo, and K. J. Hong, Molecular Crystals and Liquid Crystals, 620, Iss. 1: 71 (2015); https://doi.org/10.1080/15421406.2015.1094870
  43. S. Napisah, J. Aidah, J. Mohammad, and K. Anish, Polymers, 12, Iss. 11: 2522 (2020); https://doi.org/10.3390/polym12112522
  44. X. Zhang, J. Zhang, R. Wang, T. Zhu, and Z. Liu, Chem. Phys. Chem., 5, Iss. 7: 998 (2004); https://doi.org/10.1002/cphc.200301217
  45. S. Z. Yao and M. T. Lee, Materials, 10, Iss. 5: 555 (2017); doi:10.3390/ma10050555
  46. S. Dandan, C. Peng, W. Tianyue, X. Bixia, J. Yongjian, L. Meicheng, L. Yaoyao, D. Sheng, H. Yue, L. Zhuohai, and M. J. Michel, Nano Energy, 23: 122 (2016); https://doi.org/10.1016/j.nanoen.2016.03.006
  47. K. Sharma, V. Sharma, and S. S. Sharma, Nanoscale Res. Lett., 13: 381 (2018); https://doi.org/10.1186/s11671-018-2760-6
  48. P. Dhanasekaran and R. Marimuthu, Frontiers in Energy Research, 10: 1 (2023); https://doi.org/10.3389/fenrg.2022.998038
  49. D. Kumar, Engineering Research Express, 3, Iss. 4: 042004 (2021); doi:10.1088/2631-8695/ac3b29
  50. C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, and K. J. Chee, Nanyang Technological University, 26, Iss. 13: 1950 (2014); https://doi.org/10.1002/adma.201470083
  51. M. Mujahid, M. Ahmad and O. A. Al-Hartomy, Optoelectronics and Advanced Materials-Rapid Communications, 16, Iss. 9–10: 464 (2022).
  52. S. Mohanty, S. K. Nayak, B. S. Kaith, and S. Kalia, Polymer Nanocomposites based on Inorganic and Organic Nanomaterials, 89 (2015); https://doi.org/10.1002/9781119179108.ch4
  53. Q. Zhou, J. Qiu, Y. Wang, M. Yu, J. Liu, and X. Zhang, ACS Energy Letters, 6, Iss. 4: 1596 (2021); https://doi.org/10.1021/acsenergylett.1c00291
  54. H. Monalisa and M. A. Kumar, Journal of Materials Science: Materials in Electronics, 30: 4792 (2019); doi:10.1007/s10854-019-00773-8
  55. C. Ziyi, X. Guoxin, H. Feng, W. Weiqi, G. Dan, and W. Wei, Advanced Materials Interfaces, 4, Iss. 23: 1700998 (2017); https://doi.org/10.1002/admi.201700998
  56. L. Jianneng, C. Dachang, A. Keegan, S. Qian, H. N. Graham, Z. Yang, S. Yipeng, L. Jing, L. Ruying, Z. Li, Z. Shangqian, L. Shigang, H. Huan, Z. Xiaoxing, S. C. Veer, and S. Xueliang, Advanced Energy Materials, 11, Iss. 1: 2002455 (2021); https://doi.org/10.1002/aenm.202002455
  57. J. C. R. Morales, D. M. L?pez, M. G. S?nchez, J. C. V?zquez, C. Savaniud, and S. N. Savvina, Energy & Environmental Science, 3, Iss. 11: 1670 (2010); https://doi.org/10.1039/C0EE00166J
  58. Yiding Song, Nan Wang, Yuanhao Wang, Renyun Zhang, H?kan Olin, and Ya Yan, Advanced Energy Materials, 10, Iss. 45: 2002756 (2020); https://doi.org/10.1002/aenm.202002756
  59. S. P. Wulan, Y. D. Kusuma, and D. A. Handrini, AIP Conference Proceedings, 1755, Iss. 1: 160003 (2016); doi:10.1063/1.4958596
  60. N. Gokilamani, N. Muthukumarasamy, M. Thambidurai, A. Ranjitha, V. Dhayalan, T. S. Senthil, and R. Balasundaraprabhu, Journal of Materials Science: Materials in Electronics, 24, Iss. 9: 3394 (2013); doi:10.1007/s10854-013-1261-8
  61. A. Arunachalam, S. Govindan, and S. Vadivel, Subramanian and Balasubramanian, Materials in Electronics, 28: 18455 (2017); doi:10.1007/s10854-017-7792-7
  62. A. Br?ger, G. Fafilek, and M. N. Spallart, Solar Energy, 205: 74 (2020); https://doi.org/10.1016/j.solener.2020.05.035
  63. H. Masuda, Y. Ohta, and M. Kitayama, Journal of Materials Science and Chemical Engineering, 7, Iss. 02: 1 (2019); doi:10.4236/msce.2019.72001
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement