Download the full
version of the article (in PDF format)
MAJEED ALI HABEEB, IDREES OREIBI, and
REHAB SHATHER ABDUL HAMZA
Effect of ZrO2–CuO Nanofiller on the
Optical Constants and Optical Conductivity of Biopolymer
727–738 (2024)
PACS numbers: 78.20.Ci, 78.66.Sq, 78.67.Sc, 81.07.Pr, 81.40.Tv, 82.35.Np, 85.60.-q
Creating polymer nanocomposite specimens is carried out using the solution-casting
technique. The specimens are comprised of a host matrix of polyvinyl alcohol (PVA), in which varying
concentrations of zirconium oxide (ZrO2) and copper oxide (CuO) nanoparticles are incorporated, spanning a
range from 0 to 6 wt.%. The nanostructures composed of PVA–ZrO2–CuO exhibit notable attributes, such as low
expenses, enhanced resistance to corrosion, favourable optical properties, and a relatively lightweight
nature compared to alternative nanosystems. The optical properties are measured within the wavelength range
(lambda) from 200 nm to 840 nm. Optical properties show that the absorption coefficient, refractive index, and
dielectric-constant real and imaginary parts for PVA–ZrO2–CuO nanocomposite increase with increasing
concentrations of the ZrO2–CuO nanoparticles; so, the optical parameters at wavelength lambda=400 nm:
absorption coefficient (alfa), refractive index (n), extinction coefficient (k), real (epsilon1) and imaginary (epsilon2)
parts of dielectric constants, and optical conductivity (sigmaop) for PVA are enhanced by about 1540%, 100%,
2216%, 302%, 1116%, and 3025%, respectively, with adding of 6 wt.% ZrO2–CuO nanoparticles. The performance
of the PVA–ZrO2–CuO nanocomposites suggests that they possess favourable characteristics as optical
nanomaterials in the domains of electronics and optics
KEY WORDS: PVA, ZrO2, CuO, nanocomposites, optical properties
DOI: https://doi.org/10.15407/nnn.22.03.727
REFERENCES
- D. R. Paul and L. M. Robeson, Polymer, 49, No. 15: 3187 (2008); https://doi.org/10.1016/j.polymer.2008.04.017
- A. H. Hadi and M. A. Habeeb, Journal of Mechanical Engineering Research and Developments, 44, No. 3: 265 (2021); https://jmerd.net/03-2021-265-274/
- N. Othman, N. A. Azahari, and H. Ismail, Malaysian Polymer Journal, 6, No. 6: 147 (2011).
- M. A. Habeeb and Z. S. Jaber, East European Journal of Physics, 4: 176 (2022); doi:10.26565/2312-4334-2022-4-18
- M. A. Habeeb, European Journal of Scientific Research, 57, No. 3: 478 (2011).
- Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63: 719 (2020); https://dx.doi.org/10.21608/ejchem.2019.14847.1900
- S. Muntaz Begum, M. Rao, and R. Ravikumar, Journal of Inorganic and Organometallic Polymers and Materials, 23: 350 (2013); https://doi.org/10.1007/s10904-012-9783-8
- S. M. Mahdi and M. A. Habeeb, Optical and Quantum Electronics, 54, Iss. 12: 854 (2022); https://doi.org/10.1007/s11082-022-04267-6
- N. Hayder, M. A. Habeeb, and A. Hashim, Egyptian Journal of Chemistry, 63: 577 (2020); doi:10.21608/ejchem.2019.14646.1887
- N. Kumar, V. Crasta, and B. Praveen, Physics Research International, 2014: Article ID 742378-1 (2014); https://doi.org/10.1155/2014/742378
- M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 709 (2020); https://dx.doi.org/10.21608/ejchem.2019.13333.1832
- A. Hashim, M. A. Habeeb, and Q. M. Jebur, Egyptian Journal of Chemistry, 63: 735 (2020); https://dx.doi.org/10.21608/ejchem.2019.14849.1901
- S. M. Mahdi and M. A. Habeeb, Physics and Chemistry of Solid State, 23, No. 4: 785 (2022); doi:10.15330/pcss.23.4.785-792
- C. V. Reddy, B. Babu, I. N. Reddy, and J. Shim, Ceramics International, 44, No. 6: 6940 (2018); https://doi.org/10.1016/j.ceramint.2018.01.123
- M. A. Habeeb and W. S. Mahdi, International Journal of Emerging Trends in Engineering Research, 7, No. 9: 247 (2019); doi:10.30534/ijeter/2019/06792019
- M. A. Habeeb and R. S. Abdul Hamza, Journal of Bionanoscience, 12, No. 3: 328 (2018); https://doi.org/10.1166/jbns.2018.1535
- Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, Progress in Materials Science, 60: 208 (2014); https://doi.org/10.1016/j.pmatsci.2013.09.003
- M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 697 (2020); https://dx.doi.org/10.21608/ejchem.2019.12439.1774
- M. A. Habeeb and W. K. Kadhim, Journal of Engineering and Applied Sciences, 9, No. 4: 109 (2014); doi:10.36478/jeasci.2014.109.113
- M. Hdidar, S. Chouikhi, A. Fattoum, M. Arous, and A. Kallel, Journal of Alloys and Compounds, 750: 375 (2018); https://doi.org/10.1016/j.jallcom.2018.03.272
- M. A. Habeeb, Journal of Engineering and Applied Sciences, 9, No. 4: 102 (2014); doi:10.36478/jeasci.2014.102.108
- H. J. Park, A. Badakhsh, I. T. Im, M.-S. Kim, and C. W. Park, Applied Thermal Engineering, 107: 907 (2016); https://doi.org/10.1016/j.applthermaleng.2016.07.053
- S. M. Mahdi and M. A. Habeeb, Digest Journal of Nanomaterials and Biostructures, 17, No. 3: 941 (2022); https://doi.org/10.15251/DJNB.2022.173.941
- G. A. Eid, A. Kany, M. El-Toony, I. Bashter, and F. Gaber, Arab. J. Nucl. Sci. Appl, 46, No. 2: 226 (2013).
- A. H. Hadi and M. A. Habeeb, Journal of Physics: Conference Series, 1973, No. 1: 012063 (2021); doi:10.1088/1742-6596/1973/1/012063
- Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63, No. 2: 611 (2020); https://dx.doi.org/10.21608/ejchem.2019.10197.1669
- G. Aras, E. L. Orhan, I. F. Sel?uk, S. B. Ocak and M. Ertu?rul, Procedia–Social and Behavioral Sciences, 95: 1740 (2015); https://doi.org/10.1016/j.sbspro.2015.06.295
- M. A. Habeeb and A. H. Mohammed, Optical and Quantum Electronics, 55, Iss. 9: 791 (2023); https://doi.org/10.1007/s11082-023-05061-8
- M. H. Dwech, M. A. Habeeb, and A. H. Mohammed, Ukr. J. Phys., 67, No. 10: 757 (2022); https://doi.org/10.15407/ujpe67.10.757
- M. Martin, N. Prasad, M. M. Siva lingam, D. Sastikumar, and B. Karthikeyan, Journal of Material Science: Material in Electronics, 29: 365 (2018); https://doi.org/10.1007/s10854-017-7925-z
- M. A. Habeeb and W. H. Rahdi, Optical and Quantum Electronics, 55, Iss. 4: 334 (2023); https://doi.org/10.1007/s11082-023-04639-6
- R. Dalven and R. Gill, J. Appl. Phys., 38, No. 2: 753 (1967); doi:10.1063/1.1709406
- R. N. Bhagat and V. S. Sangawar, Int. J. Sci. Res. (IJSR), 6: 361 (2017).
- R. S. Abdul Hamza and M. A. Habeeb, Optical and Quantum Electronics, 55, Iss. 8: 705 (2023); https://doi.org/10.1007/s11082-023-04995-3
- A. Goswami, A. K. Bajpai, and B. K. Sinha, Polym. Bull., 75, No. 2: 781 (2018); https://doi.org/10.1007/s00289-017-2067-2
- S. M. Mahdi and M. A. Habeeb, AIMS Materials Science, 10, No. 2: 288 (2023); doi:10.3934/matersci.2023015
- I. Oreibi and J. M. Al-issawe, Turkish Computational and Theoretical Chemistry, 7, No. 2: 12 (2023); https://doi.org/10.33435/tcandtc.1161253
- M. A. Habeeb and R. S. A. Hamza, Indonesian Journal of Electrical Engineering and Informatics, 6, No. 4: 428 (2018); doi:10.11591/ijeei.v6i1.511
- N. K. Al-Sharifi and M. A. Habeeb, East European Journal of Physics, 2: 341 (2023); doi:10.26565/2312-4334-2023-2-40
- V. Suryawanshi, A. S. Varpe, and M. D. Deshpande, Thin Solid Films, 645: 87 (2018); https://doi.org/10.1016/j.tsf.2017.10.016
- Z. S. Jaber, M. A. Habeeb, and W. H. Radi, East European Journal of Physics, 2: 228 (2023); doi:10.26565/2312-4334-2023-2-25
- A. A. Mohammed and M. A. Habeeb, East European Journal of Physics, 2: 157 (2023); doi:10.26565/2312-4334-2023-2-15
- M. I. Baker, S. P. Walsh, Z. Schwartz, and B. D. Boyan, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100, No. 5: 1451 (2012); https://doi.org/10.1002/jbm.b.32694
|