Issues

 / 

2024

 / 

vol. 22 / 

issue 3

 



Download the full version of the article (in PDF format)

ZAINAB SABRI JABER and MAJEED ALI HABEEB

Structural and A.C. Electrical Properties of Polyvinyl Alcohol/Iron Oxide Nanocomposites for Electronic and Electrical Applications
675–685 (2024)

PACS numbers: 72.80.Tm, 77.22.Ch, 77.22.Gm, 78.30.-j, 78.67.Sc, 81.07.Pr, 82.35.Np

The PVA–Fe2O3-nanocomposites’ films were made using the casting method with various weight percentages 0, 2, 4, 6 of nanoparticles. When compared to pure PVA–Fe2O3 film, Fourier transform-based infrared (FTIR) spectroscopy spectra demonstrate a change in a peak location and, moreover, changes in terms of shape and intensity that suggests decoupling between the corresponding vibrations of iron-oxide nanoparticles (NPs). Images taken with optical microscopy reveal a distinct difference between the samples without and with iron-oxide NPs. When concentration reaches 6% weight, the iron-oxide nanoparticles create a continuous network inside the polymer. The dielectric characteristics of nanocomposites demonstrate that, as Fe2O3-NPs’ concentrations rise, the dielectric constant, dielectric loss, and alternating-current electrical conductivity of PVA–Fe2O3 nanocomposites are increased. Additionally, when the frequency increases, the electrical conductivity of PVA–Fe2O3 nanocomposites increases, while their dielectric constant and dielectric loss fall. Based on these findings, nanostructures formed of PVA doped with Fe2O3 show themselves as promising materials for optoelectronic nanodevices due to improvements in structural and A.C. electrical properties

KEY WORDS: nanocomposites, structural properties, electrical properties, electronic applications

DOI:  https://doi.org/10.15407/nnn.22.03.675

REFERENCES
  1. T. A. Taha, Polym. Bull., 76, No. 2: 903 (2019); https://doi.org/10.1007/s00289-018-2417-8
  2. A. H . Hadi and M. A. Habeeb, Journal of Mechanical Engineering Research and Developments, 44, No. 3: 265 (2021); https://jmerd.net/03-2021-265-274
  3. R. Bouzerara, S. Achour, N. Tabet, and S. Zerkout, Int. J. Nanoparticles, 4, No. 1: 10 (2011); doi:10.1504/IJNP.2011.038247
  4. M. A. Habeeb and Z. S. Jaber, East European Journal of Physics, 4: 176 (2022); doi:10.26565/2312-4334-2022-4-18
  5. M. A. Habeeb, European Journal of Scientific Research, 57, No. 3: 478 (2011).
  6. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63: 719 (2020); https://dx.doi.org/10.21608/ejchem.2019.14847.1900
  7. G. S. Kim and S. H. Hyun, J. Mater. Sci., 38: 1961 (2003); https://doi.org/10.1023/A:1023560601911
  8. S. M. Mahdi and M. A. Habeeb, Optical and Quantum Electronics, 54, Iss. 12: 854 (2022); https://doi.org/10.1007/s11082-022-04267-6
  9. N. Hayder, M. A. Habeeb, and A. Hashim, Egyptian Journal of Chemistry, 63: 577 (2020); doi:10.21608/ejchem.2019.14646.1887
  10. D. Dibbern?Brunelli, T. D. Z. Atvars, I. Joekes, and V. C. Barbosa, J. Appl. Polym. Sci., 69, No. 4: 645 (1998); doi:10.1002/(SICI)1097-4628(19980725)69:4<645::AID-APP3>3.0.CO;2-J
  11. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 709 (2020); https://dx.doi.org/10.21608/ejchem.2019.13333.1832
  12. A. Hashim, M. A. Habeeb, and Q. M. Jebur, Egyptian Journal of Chemistry, 63: 735 (2020); https://dx.doi.org/10.21608/ejchem.2019.14849.1901
  13. S. M. Mahdi and M. A. Habeeb, Physics and Chemistry of Solid State, 23, No. 4: 785 (2022); doi:10.15330/pcss.23.4.785-792
  14. N. H. El Fewaty, A. El Sayed, and R. Hafez, Polymer Science Series A, 58: 1004 (2016); https://doi.org/10.1134/S0965545X16060055
  15. M. A. Habeeb and W. S. Mahdi, International Journal of Emerging Trends in Engineering Research, 7, No. 9: 247 (2019); doi:10.30534/ijeter/2019/06792019
  16. M. A. Habeeb and R. S. Abdul Hamza, Journal of Bionanoscience, 12, No. 3: 328 (2018); https://doi.org/10.1166/jbns.2018.1535
  17. S. Nambiar and J. T. Yeow, ACS Applied Materials & Interfaces, 4, No. 11: 5717 (2012); doi:10.1021/am300783d
  18. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 697 (2020); https://dx.doi.org/10.21608/ejchem.2019.12439.1774
  19. M. A. Habeeb and W. K. Kadhim, Journal of Engineering and Applied Sciences, 9, No. 4: 109 (2014); doi:10.36478/jeasci.2014.109.113
  20. M. Hdidar, S. Chouikhi, A. Fattoum, M. Arous, and A. Kallel, Journal of Alloys and Compounds, 750: 375 (2018); https://doi.org/10.1016/j.jallcom.2018.03.272
  21. M. A. Habeeb, Journal of Engineering and Applied Sciences, 9, No. 4: 102 (2014); doi:10.36478/jeasci.2014.102.108
  22. H. J. Park, A. Badakhsh, I. T. Im, M.-S. Kim, and C. W. Park, Applied Thermal Engineering, 107: 907 (2016); doi:10.1016/j.applthermaleng.2016.07.053
  23. S. M. Mahdi and M. A. Habeeb , Digest Journal of Nanomaterials and Biostructures, 17, No. 3: 941(2022); https://doi.org/10.15251/DJNB.2022.173.941
  24. G. A. Eid, A. Kany, M. El-Toony, I. Bashter, and F. Gaber, Arab. J. Nucl. Sci. Appl., 46, No. 2: 226 (2013).
  25. A. H. Hadi and M. A. Habeeb, Journal of Physics: Conference Series, 1973: No. 1: 012063 (2021); doi:10.1088/1742-6596/1973/1/012063
  26. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63, No. 2: 611 (2020); https://dx.doi.org/10.21608/ejchem.2019.10197.1669
  27. G. Aras, E. L. Orhan, I. F. Sel?uk, S. B. Ocak and M. Ertu?rul, Procedia-Social and Behavioral Sciences, 95: 1740 (2015).
  28. M. A. Habeeb and A. H. Mohammed, Optical and Quantum Electronics, 55, Iss. 9: 791 (2023); https://doi.org/10.1007/s11082-023-05061-8
  29. M. H. Dwech, M. A. Habeeb, and A. H. Mohammed, Ukr. J. Phys., 67, No. 10: 757 (2022); https://doi.org/10.15407/ujpe67.10.757
  30. C. U. Devi, A. K. Sharma, and V. Rao, Materials Letters, 56, No. 3: 167 (2002).
  31. M. Martin, N. Prasad, M. M. Siva Lingam, D. Sastikumar, and B. Karthikeyan, Journal of Material Science: Material in Electronics, 29: 365 (2018).
  32. M. A. Habeeb and W. H. Rahdi, Optical and Quantum Electronics, 55, Iss. 4: 334 (2023); https://doi.org/10.1007/s11082-023-04639-6
  33. W. Yingkang, Y. Yang, and R. Ruicheng, Chin. J. Polym. Sci., 3: 289 (2009); https://doi.org/10.1002/pola.23288
  34. R. Dalven and R. Gill, J. Appl. Phys., 38, No. 2: 753 (1967); doi:10.1063/1.1709406
  35. V. M. Mohan, P. B. Bhargav, V. Raja, A. K. Sharma, and N. Rao, Soft Mater., 5, No. 1: 33 (2007); https://doi.org/10.1080/15394450701405291
  36. R. N. Bhagat and V. S. Sangawar, Int. J. Sci. Res. (IJSR), 6: 361 (2017).
  37. R. S. Abdul Hamza and M. A. Habeeb, Optical and Quantum Electronics, 55, Iss. 8: 705 (2023); https://doi.org/10.1007/s11082-023-04995-3
  38. A. Goswami, A. K. Bajpai, and B. K. Sinha, Polym. Bull., 75, No. 2: 781 (2018).
  39. S. M. Mahdi and M. A. Habeeb, AIMS Materials Science, 10, No. 2: 288 (2023); doi:10.3934/matersci.2023015
  40. O. E. Gouda, S. F. Mahmoud, A. A. El-Gendy, and A. S. Haiba, Indonesian Journal of Electrical Engineering, 12, No. 12: 7987 (2014).
  41. M. A. Habeeb and R. S. A. Hamza, Indonesian Journal of Electrical Engineering and Informatics, 6, No. 4: 428 (2018); doi:10.11591/ijeei.v6i1.511
  42. Z. S. Jaber, M. A. Habeeb, and W. H. Radi, East European Journal of Physics, 2: 228 (2023); doi:10.26565/2312-4334-2023-2-25
  43. Z. Guo, J. Nanoparticle Res., 12: 2415 (2010).
  44. A. A. Mohammed and M. A. Habeeb, East European Journal of Physics, 2: 157 (2023); doi:10.26565/2312-4334-2023-2-15
  45. N. K. Al-Sharifi and M. A. Habeeb, East European Journal of Physics, 2: 341 (2023); doi:10.26565/2312-4334-2023-2-40
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement