Issues

 / 

2024

 / 

vol. 22 / 

issue 3

 



Download the full version of the article (in PDF format)

R.A. SHKARBAN, D.S. LEONOV, M.YU. NATALENKO, T.I. VERBYTSKA, M.YU. BARABASH, AND IU.M. MAKOGON

Raman Effect During Formation of the Ordered L10-FePd Phase
591–601 (2024)

PACS numbers: 68.55.Nq, 75.30.Kz, 75.50.Vv, 75.60.Ej, 75.70.Ak, 78.30.Er, 81.30.Hd

Effect of the hydrogen heat treatment compared with vacuum annealing in the temperature range of 500–700 C on the formation of the ordered L10-FePd phase and variations in Raman spectra of the equiatomic FePd films are studied. The hydrogen atoms introduced into the nanoscale FePd films change the electronic structure and magnetic properties and states of the film. Ordering processes are accelerated under hydrogen treatments compared with vacuum annealing. By changing of parameters of the hydrogen annealing of the FePd film, it is possible to control the phase composition, ferromagnet -- paramagnet-variation in the magnetic states. The Raman spectroscopy allows investigate the dynamics of structural changes in the FePd films during the ordering and the ordered L10-FePd-phase formation

KEY WORDS: hydrogen, ordering, coercivity, Raman scattering spectroscopy, paramagnetism, hard-magnetic material, L10-FePd, magnetization

DOI:  https://doi.org/10.15407/nnn.22.03.577

REFERENCES
  1. D. Weller, A. Moser, L. Folks, M. E. Best, Wen Lee, M. F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn., 36: 10e15 (2000); https://doi.org/10.1109/20.824418
  2. De-Lin Zhang, Congli Sun, Yang Lv, Karl B. Schliep, Zhengyang Zhao, Jun-Yang Chen, Paul M. Voyles, and Jian-Ping Wang, Phys. Rev. Appl., 9: 044028 (2018); https://doi.org/10.1103/PhysRevApplied.9.044028
  3. L. Ma, D. A. Gilbert, V. Neu, R. Schafer, J.-G. Zheng, and X. Q. Yan, J. Appl. Phys., 116: 033922 (2014); https://doi.org/10.1063/1.4890936
  4. M. N. Shamis, N. Y. Schmidt, T. I. Verbytska, P. V. Makushko, G. Beddies, M. Albrecht, and Yu. N. Makogon, Appl. Nanosci., 12: 1227 (2022); https://doi.org/10.1007/s13204-021-01809-4
  5. M. N. Shamis et al., Metallofiz. Noveishie Tekhnol., 43, No. 4: 505 (2021); https://mfint.imp.kiev.ua/article/v43/i04/MFiNT.43.0505.pdf
  6. A. B. Shevchenko and M. Yu. Barabash, Low Temp. Phys., 39, No. 2: 151 (2013); https://doi.org/10.1063/1.4792131
  7. I. A. Vladymyrskyi, M. V. Karpets, F. Ganss, G. L. Katona, D. L. Beke, S. I. Sidorenko, T. Nagata, T. Nabatame, T. Chikyow, G. Beddies, M. Albrecht, and Iu. M. Makogon, J. Appl. Phys., 114: 164314 (2013); https://doi.org/10.1063/1.4827202
  8. P. V. Makushko, M. Yu. Verbytska, M. N. Shamis, T. I. Verbytska, G. Beddies, N. Y. Safonova, M. Albrecht, and Iu. N. Makogon, Applied Nanoscience, 10: 2775 (2020); https://doi.org/10.1007/s13204-019-01066-6
  9. W. C. Lin, B.-Y. Wang, H.-Y. Huang, C.-J. Tsai, and V. R. Mudinepalli, J. Alloys Comp., 661: 20 (2016); https://doi.org/10.1016/j.jallcom.2015.11.144
  10. A. Boufelfel, J. of Hydrogen Energy, 41, No. 8: 4719 (2016); https://doi.org/10.1016/j.ijhydene.2016.01.063
  11. P.-C. Chang, T.-H. Chuang, D.-H. Wei, and W.-C. Lin, Appl. Phys. Lett., 116: 102407 (2020); https://doi.org/10.1063/1.5142625
  12. B. Y. Wang et al., J. of Alloys and Comp., 748: 223 (2018); https://doi.org/10.1016/j.jallcom.2018.03.121
  13. N. Bouldi, P. Sainctavit, A. Juhin, L. Nataf, and F. Baudelet, Phys. Rev. B, 98: 064430 (2018); https://doi.org/10.1103/PhysRevB.98.064430
  14. E. A. Gonzalez, P. V. Jasen, N. J. Castellani, and A. Juan, J. Phys. Chem. Solids, 65, No. 11: 1799 (2004): https://doi.org/10.1016/j.jpcs.2004.05.008
  15. W. C. Lin, C.-J. Tsai, H.-Y. Huang, B.-Y. Wang, V. R. Mudinepalli, and H.-C. Chiu, Appl. Phys. Lett., 106: 12404 (2015); https://doi.org/10.1063/1.4905463
  16. P.-C. Chang, L.-J. Liaw, A. Dhanarajagopal, K.-J. Hsueh, M.-T. Lin, and W. C. Lin, ACS Appl. Nano Mater., 6, No. 4: 2784 (2023); https://doi.org/10.1021/acsanm.2c05095
  17. Leonid Levchuk, Ruslan Shkarban, Igor Kotenko, Kateryna Graivoronska, Olena Fesenko, Ivan Lukianenko, Tetiana Verbytska, Iurii Makogon, and Maksym Barabash, Thin Solid Films, 789: 1402000 (2024); https://doi.org/10.1016/j.tsf.2024.140200
  18. H. Sharma, E. Carmichael, and D. McCall, Vibration Spectroscopy, 83: 159 (2016); https://doi.org/10.1016/j.vibspec.2016.01.011
  19. Matteo Cialone, Federica Celegato, Federico Scaglione, Gabriele Barrera, Deepti Raj, Marco Co?sson, Paola Tiberto, and Paola Rizzi, Appl. Surf. Sci., 543: 148759 (2021); https://doi.org/10.1016/j.apsusc.2020.148759
  20. M. Yu. Barabash, G. G. Vlaykov, A. A. Kolesnichenko, and L. V. Rybov, Advances in Thin Films, Nanostructured Materials, and Coatings, 804: 169 (2019); https://link.springer.com/chapter/10.1007/978-981-13-6133-3_17
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement