Issues

 / 

2024

 / 

vol. 22 / 

issue 3

 



Download the full version of the article (in PDF format)

W.M. ABD EL-KADER, R. ABO-GABAL, A.M. ABDELGHANY, and A.H. ORABY

Enhanced Efficiency of Samarium-Doped TiO2 Nanoparticles for Targeted Imaging: Characterization and in vivo Evaluation
535–555 (2024)

PACS numbers: 68.37.Lp, 78.55.-m, 87.63.L-, 87.64.Cc, 87.64.km, 87.64.mh, 87.85.jj

In this study, we synthesize samarium-doped TiO2 nanoparticles (Ti(Sm)O2 NPs) using solvothermal synthesis and enhance their stability and biocompatibility by coating them with polymeric materials. Extensive characterization studies confirm the desired morphology, crystal structure, optical properties, surface charge, and biocompatibility of the Ti(Sm)O2 NPs. Additionally, in vivo imaging evaluations reveal their excellent imaging capabilities, particularly, in distinguishing lung pathologies, making them highly promising for targeted imaging applications. Importantly, in vivo toxicity studies demonstrate the biocompatibility and safety of the nanoparticles. These findings contribute to the development of advanced contrast agents for improved diagnostic imaging in biomedical applications, offering potential as effective tools for targeted imaging and enhancing the diagnosis and monitoring of various lung pathologies

KEY WORDS: nanoparticles, contrast agents, K-edge, titanium oxide, biocompatibility

DOI:  https://doi.org/10.15407/nnn.22.03.535

REFERENCES
  1. K. H. Bae, H. J. Chung, and T. G. Park, Mol. Cells, 31, Iss. 4: 295 (2011); doi:0.1007/s10059-011-0051-5
  2. F. Hallouard, N. Anton, P. Choquet, A. Constantinesco, and T. Vandamme, Biomaterials, 31, Iss. 24: 6249 (2010); doi:10.1016/j.biomaterials.2010.04.066
  3. Y. Liu, K. Ai, and L. Lu, Accounts of Chemical Research, 45, Iss. 10: 1817 (2012); doi:10.1021/ar300150c
  4. D. P. Cormode, P. C. Naha, and Z. A. Fayad, Contrast Media Mol. Imaging, 9, No. 1: 37 (2014); doi:10.1002/cmmi.1551
  5. J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, Br. J. Radiol., 79, No. 939: 248 (2006); doi:10.1259/bjr/13169882
  6. P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, European Journal of Radi-ology, 75, No. 1: 104 (2010); doi:10.1016/j.ejrad.2009.03.057
  7. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, NANO·MICRO Small, 1, Iss. 3: 325 (2005); doi:10.1002/smll.200400093
  8. A. Jakhmola, N. Anton, and T. F. Vandamme, Advanced Healthcare Materials, 1, Iss. 4: 413 (2012); doi:10.1002/adhm.201200032
  9. O. Rabin, J. Manuel Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, Nature Mater., 5, No. 2: 118 (2006); doi:10.1038/nmat1571
  10. D. Pan, E. Roessl, J. P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, and P. J. Gaffney, Angewandte Chemie [International Ed. in English], 49, No. 50: 9635 (2010); doi:10.1002/anie.201005657
  11. J. A. Nadel, W. G. Wolfe, P. D. Graf, J. E. Youker, N. Zamel, J. H. Austin, W. A. Hinchcliffe, R. H. Greenspan, and R. R. Wright, New Engl. J. Med., 283: No. 6: 281 (1970); doi:10.1056/nejm197008062830603
  12. S. Chakravarty, J. M. L. Hix, K. A. Wiewiora, M. C. Volk, E. Kenyon, D. D. Shuboni-Mulligan, B. Blanco-Fernandez, M. Kiupel, J. Thomas, L. F. Sempere, and E. M. Shapiro, Nanoscale, 12, No. 14: 7720 (2020); doi:10.1039/d0nr01234c
  13. H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, Biomaterials, 33, Iss. 21: 5384 (2012); doi:10.1016/j.biomaterials.2012.04.002
  14. S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, and L. Tayebi, Int. J. Nano-medicine, 15, 3447 (2020); doi:10.2147/ijn.s249441
  15. H. E. Townley, E. Rapa, G. Wakefield, and P. J. Dobson, Nanomedicine: Nanotechnology, Biology and Medicine, 8, Iss. 4: 526 (2012); doi:10.1016/j.nano.2011.08.003
  16. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science, 307, No. 5709: 538 (2005); doi:10.1126/science.1104274
  17. A. Koudrina and M.C. DeRosa, ACS Omega, 5, Iss. 36: 22691 (2020); doi:10.1021/acsomega.0c02650
  18. H. M. Fahmy, A. M. Mosleh, A. A. Elghany, E. Shams-Eldin, E. S. Abu Serea, S. A. Ali, and A. E. Shalan, RSC Advances, 9, 35: 20118 (2019); doi:10.1039/c9ra02907a
  19. R. Abo Gabal, S. Osama, N. Hanafy, and A. Oraby, Appl. Phys. A, 129, No. 3: 201-1 (2023); doi:10.1007/s00339-023-06482-8
  20. J. Y. Park, P. Daksha, G. H. Lee, S. Woo, and Y. Chang, Nanotechnology, 19, No. 36: 365603 (2008); doi:10.1088/0957-4484/19/36/365603
  21. T. S. Gaaz, A. B. Sulong, M. N. Akhtar, A. A. Kadhum, A. B. Mohamad, and A A. Al-Amiery, Molecules, 20, No. 12: 22833 (2015); doi:10.3390/molecules201219884
  22. M. Babic, D. Hor?k, M. Trchov?, P. Jendelov?, K. Glogarov?, P. Lesn?, V. Herynek, M. H?jek, and E. Sykov?, Bioconjug. Chem., 19, Iss. 3: 740 (2008); doi:10.1021/bc700410z
  23. S. S. Mano, K. Kanehira, S. Sonezaki, and A. Taniguchi, Int. J. Mol. Sci., 13, No. 3: 3703 (2012); doi:10.3390/ijms13033703
  24. M. F. Vitha, Spectroscopy. Principles and Instrumentation (John Wiley & Sons: 2018).
  25. M. Kannan, Transmission Electron Microscope: Principle, Components and Applications Il-lumination System (Electron Gun and Condenser Lenses) Electron Gun. In: A Textbook on Fundamentals and Applications of Nanotechnology (New Delhi: Daya Publishing House® A Division of Astral International Pvt. Ltd.: 2018), pp. 93–101.
  26. G. V. Franks, Journal of Colloid and Interface Science, 249, Iss. 1: 44 (2002); doi:10.1006/jcis.2002.8250
  27. I. De Dios, L. Ramudo, J. R. Alonso, J. S. Recio, A. C. Garcia-Montero, and M. A. Manso, FEBS Lett., 579, Iss. 28: 6355 (2005); doi:10.1016/j.febslet.2005.10.017
  28. R. A. Gabal, D. Shokeir, and A. Orabi, Trends in Sciences, 19, No. 3: 2062 (2022); doi:10.48048/tis.2022.2062
  29. E. M. Pogson, J. McNamara, P. Metcalfe, and R. A. Lewis, Quantitative Imaging in Medicine and Surgery, 3, No. 1: 18 (2013); doi:10.3978/j.issn.2223-4292.2013.02.05
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement