Download the full
version of the article (in PDF format)
W.M. ABD EL-KADER, R. ABO-GABAL, A.M. ABDELGHANY, and
A.H. ORABY
Enhanced Efficiency of Samarium-Doped
TiO2 Nanoparticles for Targeted Imaging: Characterization and in vivo
Evaluation
535–555 (2024)
PACS numbers: 68.37.Lp, 78.55.-m, 87.63.L-, 87.64.Cc, 87.64.km, 87.64.mh, 87.85.jj
In this study, we synthesize samarium-doped TiO2 nanoparticles (Ti(Sm)O2 NPs) using
solvothermal synthesis and enhance their stability and biocompatibility by coating them with polymeric
materials. Extensive characterization studies confirm the desired morphology, crystal structure, optical
properties, surface charge, and biocompatibility of the Ti(Sm)O2 NPs. Additionally, in vivo imaging
evaluations reveal their excellent imaging capabilities, particularly, in distinguishing lung pathologies,
making them highly promising for targeted imaging applications. Importantly, in vivo toxicity studies
demonstrate the biocompatibility and safety of the nanoparticles. These findings contribute to the
development of advanced contrast agents for improved diagnostic imaging in biomedical applications, offering
potential as effective tools for targeted imaging and enhancing the diagnosis and monitoring of various
lung pathologies
KEY WORDS: nanoparticles, contrast agents, K-edge, titanium oxide,
biocompatibility
DOI: https://doi.org/10.15407/nnn.22.03.535
REFERENCES
- K. H. Bae, H. J. Chung, and T. G. Park, Mol. Cells, 31, Iss. 4: 295 (2011); doi:0.1007/s10059-011-0051-5
- F. Hallouard, N. Anton, P. Choquet, A. Constantinesco, and T. Vandamme, Biomaterials, 31, Iss. 24: 6249 (2010); doi:10.1016/j.biomaterials.2010.04.066
- Y. Liu, K. Ai, and L. Lu, Accounts of Chemical Research, 45, Iss. 10: 1817 (2012); doi:10.1021/ar300150c
- D. P. Cormode, P. C. Naha, and Z. A. Fayad, Contrast Media Mol. Imaging, 9, No. 1: 37 (2014); doi:10.1002/cmmi.1551
- J. F. Hainfeld, D. N. Slatkin, T. M. Focella, and H. M. Smilowitz, Br. J. Radiol., 79, No. 939: 248 (2006); doi:10.1259/bjr/13169882
- P. A. Jackson, W. N. Rahman, C. J. Wong, T. Ackerly, and M. Geso, European Journal of Radi-ology, 75, No. 1: 104 (2010); doi:10.1016/j.ejrad.2009.03.057
- E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, NANO·MICRO Small, 1, Iss. 3: 325 (2005); doi:10.1002/smll.200400093
- A. Jakhmola, N. Anton, and T. F. Vandamme, Advanced Healthcare Materials, 1, Iss. 4: 413 (2012); doi:10.1002/adhm.201200032
- O. Rabin, J. Manuel Perez, J. Grimm, G. Wojtkiewicz, and R. Weissleder, Nature Mater., 5, No. 2: 118 (2006); doi:10.1038/nmat1571
- D. Pan, E. Roessl, J. P. Schlomka, S. D. Caruthers, A. Senpan, M. J. Scott, J. S. Allen, H. Zhang, G. Hu, and P. J. Gaffney, Angewandte Chemie [International Ed. in English], 49, No. 50: 9635 (2010); doi:10.1002/anie.201005657
- J. A. Nadel, W. G. Wolfe, P. D. Graf, J. E. Youker, N. Zamel, J. H. Austin, W. A. Hinchcliffe, R. H. Greenspan, and R. R. Wright, New Engl. J. Med., 283: No. 6: 281 (1970); doi:10.1056/nejm197008062830603
- S. Chakravarty, J. M. L. Hix, K. A. Wiewiora, M. C. Volk, E. Kenyon, D. D. Shuboni-Mulligan, B. Blanco-Fernandez, M. Kiupel, J. Thomas, L. F. Sempere, and E. M. Shapiro, Nanoscale, 12, No. 14: 7720 (2020); doi:10.1039/d0nr01234c
- H. Xing, W. Bu, Q. Ren, X. Zheng, M. Li, S. Zhang, H. Qu, Z. Wang, Y. Hua, K. Zhao, L. Zhou, W. Peng, and J. Shi, Biomaterials, 33, Iss. 21: 5384 (2012); doi:10.1016/j.biomaterials.2012.04.002
- S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, and L. Tayebi, Int. J. Nano-medicine, 15, 3447 (2020); doi:10.2147/ijn.s249441
- H. E. Townley, E. Rapa, G. Wakefield, and P. J. Dobson, Nanomedicine: Nanotechnology, Biology and Medicine, 8, Iss. 4: 526 (2012); doi:10.1016/j.nano.2011.08.003
- X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science, 307, No. 5709: 538 (2005); doi:10.1126/science.1104274
- A. Koudrina and M.C. DeRosa, ACS Omega, 5, Iss. 36: 22691 (2020); doi:10.1021/acsomega.0c02650
- H. M. Fahmy, A. M. Mosleh, A. A. Elghany, E. Shams-Eldin, E. S. Abu Serea, S. A. Ali, and A. E. Shalan, RSC Advances, 9, 35: 20118 (2019); doi:10.1039/c9ra02907a
- R. Abo Gabal, S. Osama, N. Hanafy, and A. Oraby, Appl. Phys. A, 129, No. 3: 201-1 (2023); doi:10.1007/s00339-023-06482-8
- J. Y. Park, P. Daksha, G. H. Lee, S. Woo, and Y. Chang, Nanotechnology, 19, No. 36: 365603 (2008); doi:10.1088/0957-4484/19/36/365603
- T. S. Gaaz, A. B. Sulong, M. N. Akhtar, A. A. Kadhum, A. B. Mohamad, and A A. Al-Amiery, Molecules, 20, No. 12: 22833 (2015); doi:10.3390/molecules201219884
- M. Babic, D. Hor?k, M. Trchov?, P. Jendelov?, K. Glogarov?, P. Lesn?, V. Herynek, M. H?jek, and E. Sykov?, Bioconjug. Chem., 19, Iss. 3: 740 (2008); doi:10.1021/bc700410z
- S. S. Mano, K. Kanehira, S. Sonezaki, and A. Taniguchi, Int. J. Mol. Sci., 13, No. 3: 3703 (2012); doi:10.3390/ijms13033703
- M. F. Vitha, Spectroscopy. Principles and Instrumentation (John Wiley & Sons: 2018).
- M. Kannan, Transmission Electron Microscope: Principle, Components and Applications Il-lumination System (Electron Gun and Condenser Lenses) Electron Gun. In: A Textbook on Fundamentals and Applications of Nanotechnology (New Delhi: Daya Publishing House® A Division of Astral International Pvt. Ltd.: 2018), pp. 93–101.
- G. V. Franks, Journal of Colloid and Interface Science, 249, Iss. 1: 44 (2002); doi:10.1006/jcis.2002.8250
- I. De Dios, L. Ramudo, J. R. Alonso, J. S. Recio, A. C. Garcia-Montero, and M. A. Manso, FEBS Lett., 579, Iss. 28: 6355 (2005); doi:10.1016/j.febslet.2005.10.017
- R. A. Gabal, D. Shokeir, and A. Orabi, Trends in Sciences, 19, No. 3: 2062 (2022); doi:10.48048/tis.2022.2062
- E. M. Pogson, J. McNamara, P. Metcalfe, and R. A. Lewis, Quantitative Imaging in Medicine and Surgery, 3, No. 1: 18 (2013); doi:10.3978/j.issn.2223-4292.2013.02.05
|