Issues

 / 

2024

 / 

vol. 22 / 

issue 2

 



Download the full version of the article (in PDF format)

D.M. NOZDRENKO, O.P. MOTUZYUK, O.V. DOLHOPOLOV, I.V. PAMPUKHA, K.I. BOGUTSKA, and Yu.I. PRYLUTSKY

C60 Fullerene Improves Nerve Conduction After Muscle Atrophy
517–525 (2024)

PACS numbers: 81.16.Fg, 82.39.Jn, 87.16.dp, 87.16.dr, 87.16.Tb, 87.19.Ff, 87.19.xn

Nerve conduction under stimulation of the rat muscle soleus after long-term immobilisation of the hind limbs is studied using a clinical model—the rupture of the Achilles tendon. The analysis of mechanokinetic parameters of muscle contraction is performed on day 45 after the initiation of atrophy. The water-soluble C60 fullerene is used as a therapeutic nanoagent at a daily oral dose of 1 mg/kg during the experiment. The delay in the time of muscle contraction caused by 1 Hz and 2 Hz stimulations reveals a sharp increase from 98±6 ms in control to 443±8 ms and 487±7 ms after atrophy initiation, respectively. This delay is associated with a decrease in the conductivity of the nerve stimulus due to destructive changes in the nervous tissue caused by muscle atrophy. In all the tests performed with the therapeutic administration of water-soluble C60 fullerenes, an increase in nerve conduction by 31±2% and 36±2% at 1 Hz and 2 Hz stimulation, respectively, is detected in relation to the atrophy group. This indicates the presence of compensatory activation of the endogenous antioxidant system by C60 fullerenes in the process of dystrophic changes caused by prolonged immobilisation

KEY WORDS: muscle soleus, muscle atrophy, mechanokinetics of muscle contraction, C60 fullerene

DOI:  https://doi.org/10.15407/nnn.22.02.517

REFERENCES
  1. I. Canfora, N. Tarantino, and S. Pierno, Cells, 11, No. 16: 2566 (2022); https://doi.org/10.3390/cells11162566
  2. D. N. Nozdrenko and K. I. Bogutska, Biopolym. Cell, 21, No. 3: 285 (2005) (in Russian); http://dx.doi.org/10.7124/bc.0006F3
  3. I. W. McKinnell and M. A. Rudnicki, Cell, 119, No. 7: 907 (2004); https://doi.org/10.1016/j.cell.2004.12.007
  4. Y. Ohira, B. Jiang, R. R. Roy, V. Oganov, E. Ilyina-Kakueva, J. F. Marini, and V. R. Edgerton, J. Appl. Physiol., 73: 51S (1992); https://doi.org/10.1152/jappl.1992.73.2.S51
  5. J. E. Stelzer and J. J. Widrick, J. Appl. Physiol., 95, No. 6: 2425 (2003); https://doi.org/10.1152/japplphysiol.01091.2002
  6. K. I. Bohuts’ka, Iu. I. Pryluts’ky?, and D. M. Nozdrenko, Fiziol Zh., 60, No. 1: 91 (2014) (in Ukrainian).
  7. D. N. Nozdrenko, O. M. Abramchuk, V. M. Soroca, and N. S. Miroshnichenko, Ukr. Biochem. J., 87, No. 5: 38 (2015); https://doi.org/10.15407/ubj87.05.038
  8. O. M. Khoma, D. A. Zavodovs’ky?, D. N. Nozdrenko, O. V. Dolhopolov, M. S. Miroshnychenko, and O. P. Motuziuk, Fiziol. Zh., 60, No. 1: 34 (2014); (in Ukrainian).
  9. T. Egawa, A. Goto, Y. Ohno, S. Yokoyama, A. Ikuta, M. Suzuki, T. Sugiura, Y. Ohira, T. Yoshioka, T. Hayashi, and K. Goto, Am. J. Physiol. Endocrinol. Metab., 309, No. 7: E651 (2015); https://doi.org/10.1152/ajpendo.00165.2015
  10. S. M. Ebert, A. Al-Zougbi, S. C. Bodine, and C. M. Adams, Physiology (Bethesda), 34, No. 4: 232 (2019); https://doi.org/10.1152/physiol.00003.2019
  11. S. Ventadour and D. Attaix, Curr. Opin. Rheumatol., 18, No. 6: 631 (2006); https://doi.org/10.1097/01.bor.0000245731.25383.de
  12. L. Kong, X. Gao, Y. Qian, W. Sun, Z. You, and C. Fan, Theranostics, 12, No. 11: 4993 (2022); https://doi.org/10.7150/thno.74571
  13. D. Schaakxs, D. F. Kalbermatten, W. Raffoul, M. Wiberg, and P. J. Kingham, Muscle Nerve, 47, No. 5: 691 (2013); https://doi.org/10.1002/mus.23662
  14. L. M. Marquardt and S. E. Sakiyama-Elbert, Curr. Opin. Biotechnol., 24, No. 5: 887 (2013); https://doi.org/10.1016/j.copbio.2013.05.006
  15. L. Di Cesare Mannelli, C. Ghelardini, A. Toscano, A. Pacini, and A. Bartolini, Neuroscience, 165, No. 4: 1345 (2010); https://doi.org/10.1016/j.neuroscience.2009.11.021
  16. D. Tomassoni, F. Amenta, L. Di Cesare Mannelli, C. Ghelardini, I. E. Nwankwo, A. Pacini, and S. K. Tayebati, Biomed. Res. Int., 2013: 985093 (2013); https://doi.org/10.1155/2013/985093
  17. X. Gao, H. K. Kim, J. M. Chung, and K. Chung, Pain, 131, No. 3: 262 (2007); https://doi.org/10.1016/j.pain.2007.01.011
  18. H. K. Kim, J. H. Kim, X. Gao, J.-L. Zhou, I. Lee, K. Chung, and J. M. Chung, Pain, 122, No. 1: 53 (2006); https://doi.org/10.1016/j.pain.2006.01.013
  19. J. Yowtak, K. Y. Lee, H. Y. Kim, J. Wang, H. K. Kim, K. Chung, and J. M. Chung, Pain, 152, No. 4: 844 (2011); https://doi.org/10.1016/j.pain.2010.12.034
  20. M. A. Pellegrino, J.-F. Desaphy, L. Brocca, S. Pierno, D. C. Camerino, and R. Bottinelli, J. Physiol., 589, Pt. 9: 2147 (2011); https://doi.org/10.1113/jphysiol.2010.203232
  21. B. Tastekin, A. Pelit, T. Sapmaz, A. Celenk, M. Majeed, L. Mundkur, and K. Nagabhushanam, J. Diabetes Res., 2023: 6657869 (2023); https://doi.org/10.1155/2023/6657869
  22. D. M. Nozdrenko, K. I. Bogutska, Yu. I. Prylutskyy, V. F. Korolovych, M. P. Evstigneev, U. Ritter, and P. Scharff, Fiziol. Zh., 61, No. 2: 48 (2015); https://doi.org/10.15407/fz61.02.048
  23. D. N. Nozdrenko, T. Yu. Matvienko, O. V. Vygovska, V. M. Soroca, K. I. Bogutska, N. E. Nuryshchenko, Yu. I. Prylutskyy, and À. V. Zholos, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 1: 205 (2020) (in Russian); https://doi.org/10.15407/nnn.18.01.205
  24. D. Nozdrenko, O. Abramchuk, S. Prylutska, O. Vygovska, V. Soroca, K. Bogutska, S. Khrapatyi, Yu. Prylutskyy, P. Scharff, and U. Ritter, Int. J. Mol. Sci., 22, No. 9: 4977 (2021); https://doi.org/10.3390/ijms22094977
  25. D. Nozdrenko, S. Prylutska, K. Bogutska, N. Nurishchenko, O. Abramchuk, O. Motuziuk, Yu. Prylutskyy, P. Scharff, and U. Ritter, Life (Basel), 12, No. 3: 332 (2022); https://doi.org/10.3390/life12030332
  26. S. V. Eswaran, Current Sci., 114, No. 9: 1846 (2018).
  27. S. V. Prylutska, O. P. Matyshevska, I. I. Grynyuk, Yu. I. Prylutskyy, U. Ritter, and P. Scharff, Mol. Cryst. Liq. Cryst., 468: 265 (2007).
  28. Yu. Prilutski, S. Durov, L. Bulavin, V. Pogorelov, Yu. Astashkin, V. Yashchuk, T. Ogul’chansky, E. Buzaneva, and G. Andrievsky, Mol. Cryst. Liq. Cryst., 324: 65 (1998).
  29. M. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa, Nano Letters, 5, No. 12: 2578 (2005); https://doi.org/10.1021/nl051866b
  30. D. N. Nozdrenko, S. M. Berehovyi, N. S. Nikitina, L. I. Stepanova, T. V. Beregova, and L. I. Ostapchenko, Biomed. Res., 29, No. 19: 3629 (2018); https://doi.org/10.4066/biomedicalresearch.29-18-1055
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement