Issues

 / 

2024

 / 

vol. 22 / 

issue 2

 



Download the full version of the article (in PDF format)

MOHAMMAD DARWISH ORABI, WARDA KHALIL, KHALED ALZOBAR, and JOMAA MERZA

Synthesis and Characterization of the New Imidazole-Derivative Salts’ Nanoparticles and Studying of Its Biological Activity
501–516 (2024)

PACS numbers: 81.16.Be, 87.18.-h, 87.19.X-, 87.64.Ee, 87.64.kj, 87.64.km, 87.85.Rs

Heterocyclic compounds have great importance in the medical and industrial fields. Imidazole compounds and salts are the most widespread and effective of these compounds. Therefore, in this research, we prepare a number of mono- and di-substituted derivatives of imidazole and its salts. The prepared compounds are characterized using 1H-NMR, 13C-NMR, SEM, and IR techniques. In addition, the biological activity against Escherichia coli and Staphylococcus aureus bacteria is studied for the prepared compounds. As revealed, the prepared salts are more biologically effective

KEY WORDS: imidazole derivatives, heterocyclic compounds, imidazole salts, pharmacological applications, biological activity

DOI:  https://doi.org/10.15407/nnn.22.02.501

REFERENCES
  1. M. Asif, Int. J. Bioorg. Chem., 2, Iss. 3: 146 (2017).
  2. C. Zhao, X. Qiao, Z. Yi, Q. Guan, and W. Li, Physical Chemistry Chemical Physics, 22, Iss. 5: 2849 (2020); https://doi.org/10.1039/c9cp06005g
  3. A. Olofson, K. Yakushijin, and D. A. Horne, The Journal of Organic Chemistry, 63, Iss. 4: 1248 (1998); https://doi.org/10.1021/jo9718298
  4. Y. Wan, W. Hur, C. Y. Cho, Y. Liu, F. J. Adrian, O. Lozach, S. Bach, T. Mayer, D. Fabbro, L. Meijer, and N. S. Gray, Chemistry & Biology, 11, Iss. 2: 247 (2004); https://doi.org/10.1016/j.chembiol.2004.01.015
  5. P. Molina, A. T?rraga, and F. Ot?n, Organic & Biomolecular Chemistry, 10, Iss. 9: 1711 (2012); https://doi.org/10.1039/C2OB06808G
  6. S. Jeanmart, J. Gagnepain, P. Maity, C. Lamberth, F. Cederbaum, R. Rajan, O. Jacob, M. Blum, and S. Bieri, Bioorganic & Medicinal Chemistry, 26, Iss. 8: 2009 (2018); https://doi.org/10.1016/j.bmc.2018.02.051
  7. N. Park, K. Shin, and M. K. Kang, Pharmacology and Therapeutics for Dentistry, 488 (2017); https://doi.org/10.1016/B978-0-323-39307-2.00034-5
  8. H. B’Bhatt and S. Sharma, Journal of Heterocyclic Chemistry, 52, Iss. 4: 1126 (2015); https://doi.org/10.1002/jhet.1992
  9. Ara Koh, Antonio Molinaro, Marcus St?hlman, Muhammad Tanweer Khan, Caroline Schmidt, Louise Manner?s-Holm, Hao Wu, Alba Carreras, Heeyoon Jeong, Louise E. Olofsson, Per-Olof Bergh, Victor Gerdes, Annick Hartstra, Maurits de Brauw, Rosie Perkins, Max Nieuwdorp, G?ran Bergstr?m, and Fredrik Backhed, Cell, 175, No. 4: 947 (2018); https://doi.org/10.1016/j.cell.2018.09.055
  10. S. Khabnadideh, Z. Rezaei, A. Khalafi-Nezhad, R. Bahrinajafi, R. Mohamadi, and A. A. Farrokhroz, Bioorganic & Medicinal Chemistry Letters, 13, Iss. 17: 2863 (2003); https://doi.org/10.1016/S0960-894X(03)00591-2
  11. P. N. Kalaria, S. P. Satasia, J. R. Avalani, and D. K. Raval, European Journal of Medicinal Chemistry, 83: 655 (2014); https://doi.org/10.1016/j.ejmech.2014.06.071
  12. B. Lu, F. Lu, L. Ran, K. Yu, Y. Xiao, Z. Li, F. Dai, D. Wu, and G. Lan, International Journal of Biological Macromolecules, 119: 505 (2018); https://doi.org/10.1016/j.ijbiomac.2018.07.167
  13. G. C. Moraski, J. A. Thanassi, S. D. Podos, M. J. Pucci, and M. J. Miller, The Journal of Antibiotics, 64, Iss. 10: 667 (2011); https://doi.org/10.1038/ja.2011.67
  14. Dong-Cheng Hu, Li-Wei Chen, Yun-Xia Yang, and Jia-Cheng Liu, Inorganic and Nano-Metal Chemistry, 1 (2017); https://doi.org/10.1080/15533174.2013.843562
  15. Neil J. Vickers, Current Biology, 27: Iss. 14: R713 (2017); http://dx.doi.org/10.1016/j.cub.2017.05.064
  16. E. Toja, D. Selva, and P. Schiatti, Journal of Medicinal Chemistry, 27, Iss. 5: 610 (1984); https://doi.org/10.1021/jm00371a010
  17. P. E. Bender, D. Hill, P. H. Offen, K. Razgaitis, P. Lavanchy, O. D. Stringer, B. M. Sutton, D. E. Griswold, and M. DiMartino, Journal of Medicinal Chemistry, 28, Iss. 9: 1169 (1985); https://doi.org/10.1021/jm00147a008
  18. M. Gaetano, E. Butler, K. Gahan, A. Zanetti, M. Marai, J. Chen, A. Cacace, E. Hams, C. Maingot, A. McLoughlin, and E. Brennan, European Journal of Medicinal Chemistry, 162: 80 (2019); https://doi.org/10.1016/j.ejmech.2018.10.049
  19. B. K. Keppler, D. Wehe, H. Endres, and W. Rupp, Inorganic Chemistry, 26, Iss. 6: 844 (1987); https://doi.org/10.1021/ic00253a014
  20. Ippolito Antonini, Francesco Claudi, Gloria Cristalli, Palmarisa Franchetti, Mario Grifantini, and Sante Martelli, J. Med. Chem., 31, No. 1: 260 (1988); https://doi.org/10.1021/jm00396a041
  21. Takahiro Inoue, Osamu Shimozato, Nina Matsuo, Yusuke Mori, Yoshinao Shinozaki, Jason Lin, Takayoshi Watanabe, Atsushi Takatori, Nobuko Koshikawa, Toshinori Ozaki, and Hiroki Nagase, Bioorganic & Medicinal Chemistry, 26, No. 9: 2337 (2018); https://doi.org/10.1016/j.bmc.2018.03.029
  22. David A. James, Keizo Koya, Hao Li, Shoujun Chen, Zhiqiang Xia, Weiwen Ying, Yaming Wu, and Lijun Sun, Bioorganic & Medicinal Chemistry Letters, 16: 5164 (2006); https://doi.org/10.1016/j.bmcl.2006.07.020
  23. Yusuf ?zkay, ?lhan I??kda?, Z. ?ncesu, and G?l?en Akal?n, European Journal of Medicinal Chemistry, 45, No. 8: 3320 (2010); https://doi.org/10.1016/j.ejmech.2010.04.015
  24. Fabio Bellina, Nicola Guazzelli, Marco Lessi, and Chiara Manzini, Tetrahedron, 71, Iss. 15: 2298 (2015); https://doi.org/10.1016/j.tet.2015.02.024
  25. Kirsty S. Ross and Clare Hoskins, Teaching, Research, Innovation and Public Engagement. Quilts 4 Cancer: Quilting the Chemical Sciences for Pancreatic Cancer Patients (Eds. Ourania Varsou) (Springer: 2023), pp. 167–178; https://doi.org/10.1007/978-3-031-22452-2_13
  26. John G. Hoogerheide and Bruce E. Wyka, Analytical Profiles of Drug Substances (Ed. Klaus Florey) (New Brunswick, New Jersey: The Squibb Institute for Medical Research: 1982), vol. 11, p. 225.
  27. Phyllis R. Sawyer, R. N. Brogden, R. M. Pinder, T. M. Speight, and C. S. Avery, Drugs, 9: 424 (1975); https://doi.org/10.2165/00003495-197509060-00003
  28. W. McNeely and L. R. Wiseman, Drugs, 56: 91 (1998); http://doi.org/10.2165/00003495-199856010-00011
  29. P. I. Hair and L. J. Scott, Drugs, 66: 973 (2006); http://doi.org/10.2165/00003495-200666070-00017
  30. K. McClellan and B. Jarvis, Drugs, 61: 789 (2001); http://dx.doi.org/10.2165/00003495-200161060-00007
  31. M. M. T. Buckley and R. N. Brogden, Drugs, 39: 86 (1990); http://doi.org/10.2165/00003495-199039010-00008
  32. A. Dwivedi and N. Misra, Der Pharma Chemica, 2, Iss. 2: 58 (2010).
  33. S. N. Riduan and Y. Zhang, Chemical Society Reviews, 42, Iss. 23: 9055 (2013); http://doi.org/c3cs60169b
  34. J. Gravel and A. R. Schmitzer, Organic & Biomolecular Chemistry, 15, Iss. 5: 1051 (2017); https://doi.org/10.1039/C6OB02293F
  35. E. B. Anderson and T. E. Long, Polymer, 51, Iss. 12: 2447 (2010); https://doi.org/10.1016/j.polymer.2010.02.006
  36. D. Batra, S. Seifert, and M. A. Firestone, Macromolecular Chemistry and Physics, 208, Iss. 13: 1416 (2007); https://doi.org/10.1002/macp.200700174
  37. D. Demberelnyamba, K. S. Kim, S. Choi, S. Y. Park, H. Lee, C. J. Kim, and I. D. Yoo, Bioorganic & Medicinal Chemistry, 12, Iss. 5: 853 (2004); https://doi.org/10.1016/j.bmc.2004.01.003
  38. S. Ishii and M. J. Sadowsky, Microbes and Environments, 23, Iss. 2: 101 (2008); https://doi.org/10.1264/jsme2.23.101
  39. ?. Olsvik, Y. Wasteson, A. Lund, and E. Hornes, International Journal of Food Microbiology, 12, Iss. 1: 103 (1991); https://doi.org/10.1016/0168-1605(91)90051-P
  40. M. Rostami-Yazdi, B. Clement, and U. Mrowietz, Archives of Dermatological research, 302: 531(2010); http://doi.org/10.1007/s00403-010-1061-4
  41. W. A. Lee, L. Gu, A. R. Miksztal, N. Chu, K. Leung, and P. H. Nelson, Pharmaceutical Research, 7: 161 (1990); https://doi.org/10.1023/A:1015828802490
  42. S. G. Dastidar, K. Ganguly, K. Chaudhuri, and A. N. Chakrabarty, International Journal of Antimicrobial Agents, 14, Iss. 3: 249 (2000); https://doi.org/10.1016/S0924-8579(99)00159-4
  43. A. E. Laudy, E. Kuli?ska, and S. Tyski, Molecules, 22, Iss. 1: 114 (2017); https://doi.org/10.3390/molecules22010114
  44. G. L. Rosano, E. S. Morales, and E. A. Ceccarelli, Protein Science, 28, Iss. 8: 1412 (2019); https://doi.org/10.1002/pro.3668
  45. Centers for Disease Control and Prevention (CDC) (California: MMWR Morbidity and Mortality Weekly Report), 52, Iss. 5: 88 (2003).
  46. H. W. Boucher and G. R. Corey, Clinical Infectious Diseases, 46, Iss. 5: S344 (2008); https://doi.org/10.1086/533590
  47. F. D. Lowy, New England Journal of Medicine, 339, Iss. 8: 520 (1998); http://doi.org/10.1056/NEJM199808203390806
  48. J. P. Rasigade and F. Vandenesch, Infection, Genetics and Evolution, 21: 510 (2014); https://doi.org/10.1016/j.meegid.2013.08.018
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement