Download the full
version of the article (in PDF format)
MARIAM ABDUL RAZAK DARAKLI and
MANAR ABDULLAH ABOU HASSAN
Green Synthesis of Silver Nanoparticles Using
Figs (Ficus carica L.) Leaves Extract Syrian
469–479 (2024)
PACS numbers: 68.37.Hk, 81.07.Pr, 82.80.Pv, 87.64.Ee, 87.85.jf, 87.85.Rs
The green nanoscale approach aims to advance development of clean technologies using
nanotechnology, to minimize potential environmental and human health risks associated with the manufacture
and use of nanotechnology products, and to encourage replacement of existing products with new nanoproducts,
which are more environmentally friendly throughout their lifecycle. In addition, to being inexpensive, the
easy implementation process and the advantages of synthesis without toxic chemicals are the main reasons of
interest. Nanoparticles (NPs) are synthesized in many ways, including the biological method, which is an
easy, fast, inexpensive and environmentally safe method and depends on using microorganisms or plant
extracts. In this study, silver nanoparticles (Ag NPs) are successfully synthesized using figs (Ficus
carica) leaf extract. The resulting nanoparticles are examined using scanning electron microscopy (SEM) and
energy dispersive x-ray spectroscopy (EDX). The spectrum (SEM–EDX) analysis shows that the Ag NPs are of
cubical shapes and their elemental composition contains mostly silver. The size of the nanoparticles
produced is approximately in the range of 16.9–39.5 nm
KEY WORDS: Ficus carica, silver nanoparticles, biosynthesis, plant extracts, nanotechnology, SEM, EDX
DOI: https://doi.org/10.15407/nnn.22.02.469
REFERENCES
- H. Acay, Appl. Ecol. Env. Res., 17, Iss. 6: 13793 (2019); http://dx.doi.org/10.15666/aeer/1706_1379313802
- V. Abdi, Z. Ghasemi, and I. Sourinejad, Iranian Journal of Chemistry and Chemical Engineering, 40, Iss. 5: 1375 (2021); https://doi.org/1021-9986/2021/5/1375-1385
- D. Letchumanan, S. P. Sok, S. Ibrahim, N. H. Nagoor, and N. M. Arshad, Biomolecules, 11, Iss. 4: 564 (2021); https://doi.org/10.3390/biom11040564
- M. T. Alloosh, Arab Journal of Plant Protection, 38, Iss. 4: 267 (2020).
- G. Das, H. S. Shin, and J. K. Patra, International Journal of Nanomedicine, 17, Iss. 1: 4261 (2022); https://doi.org/10.2147/IJN.S357343
- C. Li, M. Yu, S. Li, X. Yang, B. Qiao, S. Shi, Z. Chunjian, and Y. Fu, Plants, 10, Iss. 11: 2532 (2021); https://doi.org/10.3390/plants10112532
- Y. S. Lee and J. D. Cha, Kor. J. Microbiol. Biotechnol., 38, Iss. 4: 405 (2010).
- A. Corciov?, C. Mircea, A. F. Burlec, A. Fifere, I. T. Moleavin, A. Sarghi, C. Tuchilus, B. Ivanescu, and I. Macovei, Life, 12, Iss. 10: 1643 (2022); https://doi.org/10.3390/life12101643
- C. Karthik and K. V. Radha, Dig. J. Nanomater. Biostruct., 7, Iss. 3: 1007 (2012).
- H. D. Kyomuhimbo, I. N. Michira, F. B. Mwaura, S. Derese, U. Feleni, and E. I. Iwuoha, SN Applied Sciences, 681, Iss. 1: 1 (2019); https://doi.org/10.1007/s42452-019-0722-y
- M. F. Baran, A. Ko?, and S. Uzan, International J. on Math., Eng. and Natural Sci., 5, Iss. 2: 44 (2018).
- Alexandra Nicolae-Maranciuc, Dan Chicea, and Liana Maria Chicea, International Journal of Molecular Sciences, 23, Iss. 10: 5778 (2022); https://doi.org/10.3390/ijms23105778
- E. Rodr?guez-Le?n, R. I?iguez-Palomares, R. E. Navarro, R. Herrera-Urbina, J. T?nori, C. I?iguez-Palomares, and A. Maldonado, Nanoscale research Letters, 8, Iss. 1 (2013); https://doi.org/10.1186/1556-276X-8-318
- M. Naveed, B. Bukhari, T. Aziz, S. Zaib, M. A. Mansoor, A. A. Khan, M. Shahzad, A. S. Dablool, M. W. Alruways, A. A. Almalki, A. S. Alamri, and M. Alhomrani, Molecules, 27, Iss. 13: 4226 (2022); https://doi.org/10.3390/molecules27134226
- H. I. Al-Shammari and H. K. Al-Zubaidi, Iraqi J. Agric. Res., 22, Iss. 8: 78 (2017).
- M. Forough and K. Farhadi, Turkish J. Eng. Env. Sci., 34, Iss. 1: 281 (2010); https://doi.org/10.3906/muh-1005-30
- G. M. Srirangam and K. P. Rao, Rasayan J. Chem., 10, Iss. 1: 46 (2017); http://dx.doi.org/10.7324/RJC.2017.1011548
|