Issues

 / 

2024

 / 

vol. 22 / 

issue 2

 



Download the full version of the article (in PDF format)

YAROSLAV LINEVYCH, VIKTORIIA KOVAL, MYKHAILO DUSHE˛KO, MARYNA LAKYDA, YURII YASIIEVYCH, and SERHII MALIUTA

Silicon 1D Structures for Resistive and Diode Temperature Sensors
335–351 (2024)

PACS numbers: 07.07.Df, 65.80.-g, 68.37.Ps, 81.07.Gf, 81.16.Be, 84.32.Ff, 85.35.Be

Resistive and diode temperature sensors based on silicon nanowires (SiNWs) are fabricated. Silicon nanowires are obtained by two-stage metal-assisted chemical etching (MACE) technique. The influence of SiNWs synthesis parameters on device characteristics is investigated. In particular, the influence of the duration of the first and second stages of MACE, the content of solutions based on AgNO3 and H2O2, the presence of textured surface of silicon wafer before the MACE process, additional processing in an isotropic/anisotropic etchant after the MACE process on the characteristics of temperature sensors is determined. The electrical and thermosensitive parameters for obtained sensors are calculated, namely, resistance, rectifying coefficient, and coefficient of thermosensitivity. A significant influence of the MACE-process parameters on the lateral roughness and volume porosity of the thermosensitive surface is determined. As established, the following technological operations lead to an increase in resistance: a raise in the deposition time of silver nanoparticles and the use of additional post-chemical treatment, as well as a decrease in the etching time and a decrease in the amount of H2O2. The resistance of the array of silicon nanowires is in the range of 27.6–199.6 Ohm. As established, the following process parameters improve the rectifying characteristics: increasing the content of hydrogen peroxide, the presence of preliminary texturing of silicon surface, as well as the use of additional post-chemical treatment in an acid etchant. The maximum rectifying coefficient of diode temperature sensors is of 2503. Significant impact of process parameters on the lateral roughness and bulk porosity of the thermosensitive surface is revealed. As found, the thermal sensitivities of both diode sensors and resistive ones are improved with the increase of MACE first-stage parameters and the decrease of MAŃĹ second-stage parameters, as well as in the presence of acid etching treatment. The maximum thermal sensitivity coefficient of thermistors based on silicon nanowires is of 2336 ppm/K, while, for thermodiodes, this coefficient is of 2.5 mV/K

KEY WORDS: metal-assisted chemical etching, silicon nanowires, thermodiode, thermistor

DOI:  https://doi.org/10.15407/nnn.22.02.335

REFERENCES
  1. B. Sadoulet, D. Akerib, P. D. Barnes, A. Cummings, A. Da Silva, R. Diaz, J. Emes, S. Golwala, E. E. Haller, K. Itoh, W. Knowlton, F. Queinnec, R. R. Ross, D. Seitz, T. Shutt, G. Smith, W. Stockwell, and S. White, Physica B: Condensed Matter, 219: 741 (1996); https://doi.org/10.1016/0921-4526(95)00871-3
  2. Elder A de Vasconcelos, S. A Khan, W. Y Zhang, H. Uchida, and T. Katsube, Sensors and Actuators A: Physical, 83: 167 (2000); https://doi.org/10.1016/S0924-4247(00)00351-4
  3. Young-Jin Kim, Truong-Son Dinh Le, Han Ku Nam, Dongwook Yang, and Byunggi Kim, CIRP Annals, 70, No. 1: 443 (2021); https://doi.org/10.1016/j.cirp.2021.04.031
  4. Zahid Mehmood, Mohtashim Mansoor, Ibraheem Haneef, and S. Zeeshan Ali, Sensors and Actuators A: Physical, 283: 159 (2018); https://doi.org/10.1016/j.sna.2018.09.062
  5. Mohtashim Mansoor, Ibraheem Haneef, Suhail Akhtar, Andrea De Luca, and Florin Udrea, Sensors and Actuators A: Physical, 232: 63 (2015); https://doi.org/10.1016/j.sna.2015.04.022
  6. V. F. Mitin, V. V. Kholevchuk, R. V. Konakova, and N. S. Boltovet, CAS ’99 Proceedings of 1999 International Semiconductor Conference (Cat. No. 99TH8389) (Sinaia, Romania: 1999), vol. 2: pp. 495–498; doi:10.1109/SMICND.1999.810593
  7. Natarajan Pradeep, Gopal Tamil Selvi, Uma Venkatraman, Quyet Van Le, Soon Kwan Jeong, Saravanan Pandiaraj, Abdullah Alodhayb, Muthumareeswaran Muthuramamoorthy, and Andrews Nirmala Grace, Materials Today Chemistry, 22: 100576 (2021); https://doi.org/10.1016/j.mtchem.2021.100576
  8. V. Koval, M. Dusheyko, A. Ivashchuk, S. Mamykin, A. Ievtushenko, V. Barbash, M. Koliada, V. Lapshuda, and Roman Filov, Proc. of Symp. ‘2020 IEEE 40st International Conference on Electronics and Nanotechnology (ELNANO)’ (22–24 April, 2020) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2020), p. 246; https://doi.org/10.1109/ELNANO50318.2020.9088736
  9. Mrinmoy Kumar Chini, Vishal Kumar, Ariba Javed, and Soumitra Satapathi, Nano-Structures & Nano-Objects, 19: 100347 (2019); https://doi.org/10.1016/j.nanoso.2019.100347
  10. V. Koval, Yu. Yakymenko, A. Ivashchuk, M. Dusheyko, M. Fadieiev, T. Borodinova, and D. Didichenko, Proc. of Symp. ‘2018 IEEE 38st International Conference on Electronics and Nanotechnology (ELNANO)’ (24–26 April, 2018) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2018), p. 186–190; https://doi.org/10.1109/ELNANO.2018.8477552
  11. V. Lapshuda, V. Koval, V. Barbash, M. Dusheiko, O. Yashchenko, and S. Malyuta, Proc. of Symp. ‘2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)’ (Oct. 10–14, 2022) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2022), p. 208; https://doi.org/10.1109/ELNANO54667.2022.9927092
  12. Yi Xin, Junye Tong, Tianyuan Hou, Hongyan Liu, Meng Cui, Xuefeng Song, Yuhang Wang, Tingting Lin, Lingling Wang, and Gang Wang, Measurement., 212: 112694 (2023); https://doi.org/10.1016/j.measurement.2023.112694
  13. V. M. Koval, A. V. Ivashchuk, Yu. I. Yakymenko, M. G. Dusheyko, Yu. V. Yasievich, G. S. Khrypunov, and E. I. Sokol, Radioelectronics and Communications System, 59, No. 2: 53 (2016); http://dx.doi.org/10.3103%2FS0735272716020011
  14. V. Abhikha Sherlin, Megha Maria Stanley, Sea-Fue Wang, Balasubramanian Sriram, Jeena N. Baby, and Mary George, Food Chemistry, 423: 136268 (2023).
  15. M. G. Dusheiko, V. M. Koval, and T. Yu. Obukhova, Quantum Electronics & Optoelectronics, 25, No. 1: 058 (2022); https://doi.org/10.15407/spqeo25.01.058
  16. Nagaraj P. Shetti, Amit Mishra, Soumen Basu, and Tejraj M. Aminabhavi, Materials Today Chemistry, 20: 100454 (2021); https://doi.org/10.1016/j.mtchem.2021.100454
  17. A. Orlov, V. Ulianova, A. Zazerin, O. Bogdan, G. Pashkevich, and Y. Yakymenko, Radioelectronics and Communications Systems, 59, No. 2: 60 (2016); https://doi.org/10.3103/S0735272716020023
  18. Nagy L. Torad, Islam M. Minisy, Hadir M. Sharaf, Jaroslav Stejskal, Yusuke Yamauchi, and Mohamad M. Ayad, Synthetic Metals, 282: 116935 (2021); https://doi.org/10.1016/j.synthmet.2021.116935
  19. Gengfeng Zheng, Semiconducting Silicon Nanowires for Biomedical Applications (Ed. Jeffery Coffer). Ch. 2. Growth and Characterization of Silicon Nanowires for Biomedical Applications (Woodhead Publishing: 2022); https://doi.org/10.1016/B978-0-12-821351-3.00002-1
  20. Madhu Sudan Saha, Ruying Li, and Xueliang Sun, Journal of Physics and Chemistry of Solids, 156: 110146 (2021); https://doi.org/10.1016/j.jpowsour.2007.11.036
  21. V. Koval, Yu. Yakymenko, A. Ivashchuk, M. Dusheyko, O. Masalskyi, M. Koliada, and D. Kulish, Proc. of Symp. ‘2019 IEEE 39st International Conference on Electronics and Nanotechnology (ELNANO)’ (16–18 April, 2019) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2019), p. 282–287; https://doi.org/10.1109/ELNANO.2019.8783506
  22. Amit Solanki and Handon Um, Semiconductors and Semimetals, 98: 71 (2018); https://doi.org/10.1016/bs.semsem.2018.04.001
  23. Peng Yu, Jiang Wu, Shenting Liu, Jie Xiong, Chennupati Jagadish, and Zhiming M. Wang, Nano Today, 11: 704 (2016); https://doi.org/10.1016/j.nantod.2016.10.001
  24. Nafis Ahmed, P. Balaji Bhargav, Arokiyadoss Rayerfrancis, Balaji Chandra, and P. Ramasamy, Materials Letters, 219: 127 (2018); https://doi.org/10.1016/j.matlet.2018.02.086
  25. Bagur R. Deepu, Seegehalli M. Anil, Purakkat Savitha, and Yeriyur B. Basavaraju, Vacuum, 185: 109991 (2021); https://doi.org/10.1016/j.vacuum.2020.109991
  26. A. Fasoli and W. I. Milne, Materials Science in Semiconductor Processing, 15: 601 (2012); https://doi.org/10.1016/j.mssp.2012.05.010
  27. Yaroslav Linevych, Viktoriia Koval, Mykhailo Dushełko, Yuriy Yakymenko, Maryna Lakyda, and Valerii Barbash, Proc. of Symp. ‘2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)’ (Oct. 10–14, 2022) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2022), pp. 190–195; https://doi.org/10.1109/ELNANO54667.2022.9927122
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement