Download the full
version of the article (in PDF format)
YAROSLAV LINEVYCH, VIKTORIIA KOVAL, MYKHAILO DUSHE˛KO,
MARYNA LAKYDA, YURII YASIIEVYCH, and SERHII MALIUTA
Silicon 1D Structures for Resistive and
Diode Temperature Sensors
335–351 (2024)
PACS numbers: 07.07.Df, 65.80.-g, 68.37.Ps, 81.07.Gf, 81.16.Be, 84.32.Ff, 85.35.Be
Resistive and diode temperature sensors based on silicon nanowires (SiNWs) are fabricated.
Silicon nanowires are obtained by two-stage metal-assisted chemical etching (MACE) technique. The influence
of SiNWs synthesis parameters on device characteristics is investigated. In particular, the influence of the
duration of the first and second stages of MACE, the content of solutions based on AgNO3 and H2O2, the
presence of textured surface of silicon wafer before the MACE process, additional processing in an
isotropic/anisotropic etchant after the MACE process on the characteristics of temperature sensors is
determined. The electrical and thermosensitive parameters for obtained sensors are calculated, namely,
resistance, rectifying coefficient, and coefficient of thermosensitivity. A significant influence of the
MACE-process parameters on the lateral roughness and volume porosity of the thermosensitive surface is
determined. As established, the following technological operations lead to an increase in resistance: a
raise in the deposition time of silver nanoparticles and the use of additional post-chemical treatment, as
well as a decrease in the etching time and a decrease in the amount of H2O2. The resistance of the array of
silicon nanowires is in the range of 27.6–199.6 Ohm. As established, the following process parameters improve
the rectifying characteristics: increasing the content of hydrogen peroxide, the presence of preliminary
texturing of silicon surface, as well as the use of additional post-chemical treatment in an acid etchant.
The maximum rectifying coefficient of diode temperature sensors is of 2503. Significant impact of process
parameters on the lateral roughness and bulk porosity of the thermosensitive surface is revealed. As found,
the thermal sensitivities of both diode sensors and resistive ones are improved with the increase of MACE
first-stage parameters and the decrease of MAŃĹ second-stage parameters, as well as in the presence of acid
etching treatment. The maximum thermal sensitivity coefficient of thermistors based on silicon nanowires is
of 2336 ppm/K, while, for thermodiodes, this coefficient is of 2.5 mV/K
KEY WORDS: metal-assisted chemical etching, silicon nanowires, thermodiode, thermistor
DOI: https://doi.org/10.15407/nnn.22.02.335
REFERENCES
- B. Sadoulet, D. Akerib, P. D. Barnes, A. Cummings, A. Da Silva, R. Diaz, J. Emes, S. Golwala, E. E. Haller, K. Itoh, W. Knowlton, F. Queinnec, R. R. Ross, D. Seitz, T. Shutt, G. Smith, W. Stockwell, and S. White, Physica B: Condensed Matter, 219: 741 (1996); https://doi.org/10.1016/0921-4526(95)00871-3
- Elder A de Vasconcelos, S. A Khan, W. Y Zhang, H. Uchida, and T. Katsube, Sensors and Actuators A: Physical, 83: 167 (2000); https://doi.org/10.1016/S0924-4247(00)00351-4
- Young-Jin Kim, Truong-Son Dinh Le, Han Ku Nam, Dongwook Yang, and Byunggi Kim, CIRP Annals, 70, No. 1: 443 (2021); https://doi.org/10.1016/j.cirp.2021.04.031
- Zahid Mehmood, Mohtashim Mansoor, Ibraheem Haneef, and S. Zeeshan Ali, Sensors and Actuators A: Physical, 283: 159 (2018); https://doi.org/10.1016/j.sna.2018.09.062
- Mohtashim Mansoor, Ibraheem Haneef, Suhail Akhtar, Andrea De Luca, and Florin Udrea, Sensors and Actuators A: Physical, 232: 63 (2015); https://doi.org/10.1016/j.sna.2015.04.022
- V. F. Mitin, V. V. Kholevchuk, R. V. Konakova, and N. S. Boltovet, CAS ’99 Proceedings of 1999 International Semiconductor Conference (Cat. No. 99TH8389) (Sinaia, Romania: 1999), vol. 2: pp. 495–498; doi:10.1109/SMICND.1999.810593
- Natarajan Pradeep, Gopal Tamil Selvi, Uma Venkatraman, Quyet Van Le, Soon Kwan Jeong, Saravanan Pandiaraj, Abdullah Alodhayb, Muthumareeswaran Muthuramamoorthy, and Andrews Nirmala Grace, Materials Today Chemistry, 22: 100576 (2021); https://doi.org/10.1016/j.mtchem.2021.100576
- V. Koval, M. Dusheyko, A. Ivashchuk, S. Mamykin, A. Ievtushenko, V. Barbash, M. Koliada, V. Lapshuda, and Roman Filov, Proc. of Symp. ‘2020 IEEE 40st International Conference on Electronics and Nanotechnology (ELNANO)’ (22–24 April, 2020) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2020), p. 246; https://doi.org/10.1109/ELNANO50318.2020.9088736
- Mrinmoy Kumar Chini, Vishal Kumar, Ariba Javed, and Soumitra Satapathi, Nano-Structures & Nano-Objects, 19: 100347 (2019); https://doi.org/10.1016/j.nanoso.2019.100347
- V. Koval, Yu. Yakymenko, A. Ivashchuk, M. Dusheyko, M. Fadieiev, T. Borodinova, and D. Didichenko, Proc. of Symp. ‘2018 IEEE 38st International Conference on Electronics and Nanotechnology (ELNANO)’ (24–26 April, 2018) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2018), p. 186–190; https://doi.org/10.1109/ELNANO.2018.8477552
- V. Lapshuda, V. Koval, V. Barbash, M. Dusheiko, O. Yashchenko, and S. Malyuta, Proc. of Symp. ‘2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)’ (Oct. 10–14, 2022) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2022), p. 208; https://doi.org/10.1109/ELNANO54667.2022.9927092
- Yi Xin, Junye Tong, Tianyuan Hou, Hongyan Liu, Meng Cui, Xuefeng Song, Yuhang Wang, Tingting Lin, Lingling Wang, and Gang Wang, Measurement., 212: 112694 (2023); https://doi.org/10.1016/j.measurement.2023.112694
- V. M. Koval, A. V. Ivashchuk, Yu. I. Yakymenko, M. G. Dusheyko, Yu. V. Yasievich, G. S. Khrypunov, and E. I. Sokol, Radioelectronics and Communications System, 59, No. 2: 53 (2016); http://dx.doi.org/10.3103%2FS0735272716020011
- V. Abhikha Sherlin, Megha Maria Stanley, Sea-Fue Wang, Balasubramanian Sriram, Jeena N. Baby, and Mary George, Food Chemistry, 423: 136268 (2023).
- M. G. Dusheiko, V. M. Koval, and T. Yu. Obukhova, Quantum Electronics & Optoelectronics, 25, No. 1: 058 (2022); https://doi.org/10.15407/spqeo25.01.058
- Nagaraj P. Shetti, Amit Mishra, Soumen Basu, and Tejraj M. Aminabhavi, Materials Today Chemistry, 20: 100454 (2021); https://doi.org/10.1016/j.mtchem.2021.100454
- A. Orlov, V. Ulianova, A. Zazerin, O. Bogdan, G. Pashkevich, and Y. Yakymenko, Radioelectronics and Communications Systems, 59, No. 2: 60 (2016); https://doi.org/10.3103/S0735272716020023
- Nagy L. Torad, Islam M. Minisy, Hadir M. Sharaf, Jaroslav Stejskal, Yusuke Yamauchi, and Mohamad M. Ayad, Synthetic Metals, 282: 116935 (2021); https://doi.org/10.1016/j.synthmet.2021.116935
- Gengfeng Zheng, Semiconducting Silicon Nanowires for Biomedical Applications (Ed. Jeffery Coffer). Ch. 2. Growth and Characterization of Silicon Nanowires for Biomedical Applications (Woodhead Publishing: 2022); https://doi.org/10.1016/B978-0-12-821351-3.00002-1
- Madhu Sudan Saha, Ruying Li, and Xueliang Sun, Journal of Physics and Chemistry of Solids, 156: 110146 (2021); https://doi.org/10.1016/j.jpowsour.2007.11.036
- V. Koval, Yu. Yakymenko, A. Ivashchuk, M. Dusheyko, O. Masalskyi, M. Koliada, and D. Kulish, Proc. of Symp. ‘2019 IEEE 39st International Conference on Electronics and Nanotechnology (ELNANO)’ (16–18 April, 2019) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2019), p. 282–287; https://doi.org/10.1109/ELNANO.2019.8783506
- Amit Solanki and Handon Um, Semiconductors and Semimetals, 98: 71 (2018); https://doi.org/10.1016/bs.semsem.2018.04.001
- Peng Yu, Jiang Wu, Shenting Liu, Jie Xiong, Chennupati Jagadish, and Zhiming M. Wang, Nano Today, 11: 704 (2016); https://doi.org/10.1016/j.nantod.2016.10.001
- Nafis Ahmed, P. Balaji Bhargav, Arokiyadoss Rayerfrancis, Balaji Chandra, and P. Ramasamy, Materials Letters, 219: 127 (2018); https://doi.org/10.1016/j.matlet.2018.02.086
- Bagur R. Deepu, Seegehalli M. Anil, Purakkat Savitha, and Yeriyur B. Basavaraju, Vacuum, 185: 109991 (2021); https://doi.org/10.1016/j.vacuum.2020.109991
- A. Fasoli and W. I. Milne, Materials Science in Semiconductor Processing, 15: 601 (2012); https://doi.org/10.1016/j.mssp.2012.05.010
- Yaroslav Linevych, Viktoriia Koval, Mykhailo Dushełko, Yuriy Yakymenko, Maryna Lakyda, and Valerii Barbash, Proc. of Symp. ‘2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)’ (Oct. 10–14, 2022) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute: 2022), pp. 190–195; https://doi.org/10.1109/ELNANO54667.2022.9927122
|