Download the full
version of the article (in PDF format)
MAHMOUD ALSALEH and IBRAHEEM ASAAD ISMAEEL
Preparation of
MFe2O4 (M = Ca, Mg) Nanoparticles by Sol–Gel Method and Studying of
Their Catalytic Activity
323–334 (2024)
PACS numbers: 61.05.cp, 78.30.Hv, 78.40.Ha, 81.07.Nb, 81.16.Hc, 81.20.Fw, 81.70.Pg
In this paper, MFe2O4 nanoparticles (M = Ca, Mg) are synthesized by sol–gel method using
different stabilizer (acetic acid, pectin and beta-carrageenan). The stability of the formed gel is studied
extensively by determining the affective conditions (type of stabilizer, molar ratio of
stabiliser:M(OH)2:Fe(OH)3, time, and temperature) on the preparation process. The most stabilized gel
obtained using beta-carrageenan for both Ca, Mg with (1.2•10-2:1:2), (1.37•10-2:1:2) molar ratios,
respectively, during 72 h at 25C. The obtained gel is calcinated and analysed using DTA, XRD and IR
spectroscopy. The results show that the calcium ferrite is formed at 493.2C by orthorhombic lattice cell
with particle size of 13.01 nm and the magnesium ferrite is formed at 621.4C by cubic crystal phase with
particle size of 15.93 nm
KEY WORDS: sol–gel method, beta-carrageenan, calcium ferrite, magnesium ferrite
DOI: https://doi.org/10.15407/nnn.22.02.323
REFERENCES
- R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, Journal of Applied Physics, 113, Iss. 1: 011301 (2013); https://doi.org/10.1063/1.4754271
- S. F. Wang, X. T. Zu, G. Z. Sun, D. M. Li, C. D. He, X. Xiang, W. Liu, S. B. Han, and S. Li, Ceramics International, 42, Iss. 16: 19133 (2016); https://doi.org/10.1016/j.ceramint.2016.09.075
- T. Zargar and A. Kermanpur, Ceramics International, 43, Iss. 7: 5794 (2017); https://doi.org/10.1016/j.ceramint.2017.01.127
- A. Abedini, A. Rajabi, F. Larki, M. Saraji, and M. S. Islam, Journal of Alloys and Compounds, 711: 190 (2017); https://doi.org/10.1016/j.jallcom.2017.03.356
- M. Goodarz Naseri, E. B. Saion, and A. Kamali, International Scholarly Research Notices, 2012: 1 (2012); https://doi.org/10.5402/2012/604241
- Sh. Ida, K. Yamada, T. Matsunaga, H. Hagiwara, Ya. Matsumoto, and T. Ishihara, Journal of the American Chemical Society, 132, Iss. 49: 17343 (2010); https://doi.org/10.1021/ja106930f
- S. K. Pardeshi and R. Y. Pawar, Materials Research Bulletin, 45, Iss. 5: 609 (2010); https://doi.org/10.1016/j.materresbull.2010.01.011
- R. A. Candeia, M. I. B. Bernardi, E. Longo, I. M. G. Santos, and A. G. Souza, Materials Letters, 58, Iss. 5: 569 (2004); https://doi.org/10.1016/S0167-577X(03)00563-9
- M. Dadwal, D. Solan, and H. Pradesh, Journal of Advanced Pharmacy Education & Research, 4, Iss. 1: 20 (2014).
- R. J. Willey, P. Noirclerc, and G. Busca, Chemical Engineering Communications, 123, Iss. 1: 1 (1993); https://doi.org/10.1080/00986449308936161
- L. G. J. de Haart and G. Blasse, Journal of the Electrochemical Society, 132, Iss. 12: 2933 (1985); https://doi.org/10.1149/1.2113696
- Y. Huang, Y. Tang, J. Wang, and Q. Chen, Materials Chemistry and Physics, 97, Iss. 2–3: 394 (2006); https://doi.org/10.1016/j.matchemphys.2005.08.035
- D. Hirabayashi, T. Yoshikawa, K. Mochizuki, K. Suzuki, and Y. Sakai, Catalysis Letters, 110: 155 (2006); https://doi.org/10.1007/s10562-006-0104-0
- N.O. Ikenaga, Y. Ohgaito, and T. Suzuki, Energy & Fuels, 19, Iss. 1: 170 (2005); https://doi.org/10.1021/ef049907z
- V. V. Kharton, E. V. Tsipis, V. A. Kolotygin, M. Avdeev, A. P. Viskup, J. C. Waerenborgh, and J. R. Frade, Journal of the Electrochemical Society, 155, Iss. 3: 13 (2008); https://doi.org/10.1149/1.2823458.
- C. Ling and F. Mizuno, Chemistry of Materials, 25, Iss. 15: 3062 (2013); https://doi.org/10.1021/cm401250c
- B. Phillips and A. Muan, Journal of the American Ceramic Society, 41, Iss. 11: 445 (1958); https://doi.org/10.1111/j.1151-2916.1958.tb12893.x
- J. Wan, X. Chen, Z. Wang, X. Yang, and Y. Qian, Journal of Crystal Growth, 276, Iss. 3–4: 571 (2005); https://doi.org/10.1016/j.jcrysgro.2004.11.423
- S. K. Pradhan, S. Bid, M. Gateshki, and V. Petkov, Materials Chemistry and Physics, 93, Iss. 1: 224 (2005); https://doi.org/10.1016/j.matchemphys.2005.03.017
- Z. Yuanbi, Q. Zumin, and J. Huang, Chinese Journal of Chemical Engineering, 16, Iss. 3: 451 (2008); https://doi.org/10.1016/S1004-9541(08)60104-4
- E. Ruiz-Hern?ndez, A. L?pez-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki, and M. Vallet-Reg?, Chemistry of Materials, 19, Iss. 14: 3455 (2007); https://doi.org/10.1021/cm0705789
- M. Faraji, Y. Yamini, and M. Rezaee, Journal of the Iranian Chemical Society, 7: 1 (2010); https://doi.org/10.1007/BF03245856
- A. Pradeep and G. Chandrasekaran, Materials Letters, 60, Iss. 3: 371 (2006); https://doi.org/10.1016/j.matlet.2005.08.053
- Z. Yue, J. Zhou, L. Li, H. Zhang, and Z. Gui, Journal of Magnetism and Magnetic Materials, 208, Iss. 1–2: 55 (2000); https://doi.org/10.1016/S0304-8853(99)00566-1
- Z. Yue, W. Guo, J. Zhou, Z. Gui, and L. Li, Journal of Magnetism and Magnetic Materials, 270, Iss. 1–2: 216 (2004); https://doi.org/10.1016/j.jmmm.2003.08.025
- H. Spiers, I. P. Parkin, Q. A. Pankhurst, L. Affleck, M. Green, D. J. Caruana, M. V. Kuznetsov, J. Yao, G. Vaughan, A. Terry, and A. Kvick, Journal of Materials Chemistry, 14, Iss. 7: 1104 (2004); https://doi.org/10.1039/B314159B
- J. Cao, W. Chen, L. Chen, X. Sun, and H. Guo, Ceramics International, 42, Iss. 15: 17834 (2016); https://doi.org/10.1016/j.ceramint.2016.08.114
- N. Zanganeh, S. Zanganeh, A. Rajabi, M. Allahkarami, R. Rahbari Ghahnavyeh, A. Moghaddas, M. Aieneravaie, N. Asadizanjani, and S. K. Sadrnezhaad, Journal of Coordination Chemistry, 67, Iss. 3: 555 (2014); https://doi.org/10.1080/00958972.2014.892590
|