Issues

 / 

2024

 / 

vol. 22 / 

issue 2

 



Download the full version of the article (in PDF format)

Ol.D. ZOLOTARENKO, An.D. ZOLOTARENKO, N.Y. AKHANOVA, N.A. SHVACHKO, M. UALKHANOVA, E.P. RUDAKOVA, D.V. SHCHUR, Yu.I. ZHIRKO, M.T. GABDULLIN, T.V. MYRONENKO, M.V. CHYMBAI, A.D. ZOLOTARENKO, I.V. ZAGORULKO, and Yu.O. TARASENKO

Physicochemical Processes of Electroarc Synthesis of Carbon Nanomaterials
261–286 (2024)

PACS numbers: 52.80.Mg, 78.30.Na, 78.40.Ri, 81.05.ub, 81.05.ue, 81.07.De, 81.16.Be

The paper proposes an explanation of the physicochemical processes occurring during the electric-arc plasma-chemical synthesis of carbon nanomaterials. A diagram of the action of forces on charged particles and a diagram of forces acting on the motion of ions in an arc in the presence of a magnetic field for the plasma-chemical synthesis of carbon nanomaterials are presented and considered. The levels of organization of matter in an arc discharge during the formation of carbon vapour with an increase in temperature are considered. A comparative characterization and a conditional scheme for the formation of various carbon nanostructures during plasma-chemical synthesis are proposed. The sequence of carbon transformations during the formation of carbon nanomaterials and the conditional levels of organization of matter with the types of processes occurring on each of them during structure formation, as the classification of carbon structures by size levels under conditions of temperature decrease from plasma temperature to room one are established. Carbon nanomaterials are synthesized by the plasma-chemical method, and the analysis of the obtained and processed carbon nanostructures is carried out by the following methods: scanning electron microscopy, transmission electron microscopy, Raman spectral analysis, UV–VIS spectroscopy, spectrophotometric analysis. The presence of fullerenes in the products of plasma-chemical synthesis is established, and fullerenes are extracted from the synthesized wall soot

KEY WORDS: carbon nanomaterials, fullerenes, fullerites, endofullerenes, carbon nanotubes, synthesis, self-organization, plasma, electric arc

DOI:  https://doi.org/10.15407/nnn.22.02.261

REFERENCES
  1. V. A. Lavrenko, I. A. Podchernyaeva, D. V. Shchur, An. D. Zolotarenko, and Al. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 56: 504 (2018); https://doi.org/10.1007/s11106-018-9922-z
  2. Ol. D. Zolotarenko, M. N. Ualkhanova, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, and O. O. Havryliuk, Chemistry, Physics and Technology of Surface, 13, No. 2: 209 (2022); https://doi.org/10.15407/hftp13.02.209
  3. Z. A.? Matysina, Ol. D.? Zolotarenko, M. ?Ualkhanova, O. P.? Rudakova, N. Y.? Akhanova, An. D. ?Zolotarenko, D. V.? Shchur, M. T.? Gabdullin, N. A.? Gavrylyuk, O. D.? Zolotarenko, M. V.? Chymbai, and I. V.? Zagorulko, Prog. Phys. Met., 23, No. 3: 528 (2022); https://doi.org/10.15407/ufm.23.03.528
  4. A. D. Zolotarenko, A. D. Zolotarenko, E. P. Rudakova, S. Y. Zaginaichenko, A. G. Dubovoy, D. V. Schur, and Y. A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 137; https://doi.org/10.1007/978-94-007-0899-0_11
  5. D. V. Schur, A. G. Dubovoy, S. Yu. Zaginaichenko, V. M. Adejev, A. V. Kotko, V. A. Bogolepov, A. F. Savenko, A. D. Zolotarenko, S. A. Firstov, and V. V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007), p. 199; doi:10.1007/978-1-4020-5514-0_25
  6. M. N. Ualkhanova, A. S. Zhakypov, R. R. Nemkayeva, M. B. Aitzhanov, B. Y. Kurbanov, N. Y. Akhanova, Y. Yerlanuly, S. A. Orazbayev, D. Shchur, A. Zolotarenko, and M. T. Gabdullin, Energies, 16, No. 3: 1450 (2023); https://doi.org/10.3390/en16031450
  7. S. Y. Zaginaichenko and Z. A. Matysina, Carbon, 41, No. 7: 1349 (2003); https://doi.org/10.1016/S0008-6223(03)00059-9
  8. V. A. Lavrenko, D. V. Shchur, A. D. Zolotarenko, and A. D. Zolotarenko, Powder Metallurgy and Metal Ceramics, 57, No. 9: 596 (2019); https://doi.org/10.1007/s11106-019-00021-y
  9. Ol. D. Zolotarenko, E. P. Rudakova, I. V. Zagorulko, N. Y. Akhanova, An. D. Zolotarenko, D. V. Schur, M. T. Gabdullin, M. Ualkhanova, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, and O. E. Dubrova, Ukrainian Journal of Physics, 68, No. 1: 57 (2023); https://doi.org/10.15407/ujpe68.1.57
  10. Ol. D. Zolotarenko, An. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, M. Ualkhanova, D. V. Schur, M. T. Gabdullin, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, and O. O. Havryliuk, Chemistry, Physics and Technology of Surface, 14, No. 2: 191 (2023); https://doi.org/10.15407/hftp14.02.191
  11. D. V. Schur, S. Y. Zaginaichenko, E. A. Lysenko, T. N. Golovchenko, and N. F. Javadov, NATO Science for Peace and Security Series C: Environmental Security, F2: 53 (2008); https://doi.org/10.1007/978-1-4020-8898-8_5
  12. D. V. Schur, S. Y. Zaginaichenko, A. D. Zolotarenko, and T. N. Veziroglu, NATO Science for Peace and Security Series C: Environmental Security, F2: 85 (2008); https://doi.org/10.1007/978-1-4020-8898-8_7
  13. O. D. Zolotarenko, O. P. Rudakova, M. T. Kartel, H. O. Kaleniuk, A. D. Zolotarenko, D. V. Schur, and Y. O. Tarasenko, The Mechanism of Forming Carbon Nanostructures by Electric Arc-Method, 12, No. 27: 263 (2020); https://doi.org/10.15407/Surface.2020.12.263
  14. Ol. D. Zolotarenko, O. P. Rudakova, N. E. Akhanova, An. D. Zolotarenko, D. V. Shchur, Z. A. Matysina, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrilyuk, O. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 3: 725 (2022); https://doi.org/10.15407/nnn.20.03.725
  15. D. S. Kerimbekov, N. E. Akhanova, M. T. Gabdullin, Kh. A. Abdullin, D. G. Batryshev, A. D. Zolotarenko N. A. Gavrylyuk, O. D. Zolotarenko, and D. V. Shchur, Journal of Problems in the Evolution of Open Systems, 24, Nos. 3–4: 79 (2023); https://doi.org/10.26577/JPEOS.2022.v24.i2.i6
  16. N. Y. Akhanova, D. V. Schur, N. A. Gavrylyuk, M. T. Gabdullin, N. S. Anikina, An. D. Zolotarenko, O. Ya. Krivushchenko, Ol. D. Zolotarenko, B. M. Gorelov, E. Erlanuli, and D. G. Batrishev, Chemistry, Physics and Technology of Surface, 11, No. 3: 429 (2020); https://doi.org/10.15407/hftp11.03.429
  17. Z. A.? Matysina, Ol. D.? Zolotarenko, O. P.? Rudakova, N. Y.? Akhanova, A. P.? Pomytkin, An. D.? Zolotarenko, D. V.? Shchur, M. T.? Gabdullin, M. Ualkhanova, N. A.? Gavrylyuk, A. D.? Zolotarenko, M. V.? Chymbai, and I. V. Zagorulko, Prog. Phys. Met., 23, No. 3: 510 (2022); https://doi.org/10.15407/ufm.23.03.510
  18. N. Ye. Akhanova, D. V. Shchur, A. P. Pomytkin, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. Ualkhanova, W. Bo, and D. Ang, Journal of Nanoscience and Nanotechnology, 21: 2435 (2021); https://doi.org/10.1166/jnn.2021.18970
  19. V. M. Gun’ko, V. V. Turov, V. I. Zarko, G. P. Prykhod’ko, T. V. Krupska, A. P. Golovan, J. Skubiszewska-Zi?ba, B. Charmas, and M. T. Kartel, Chemical Physics, 459: 172 (2015); https://doi.org/10.1016/j.chemphys.2015.08.016
  20. M. M. Nishchenko, S. P. Likhtorovich, A. G. Dubovoy, and T. A. Rashevskaya, Carbon, 41, No. 7: 1381 (2003); https://doi.org/10.1016/S0008-6223(03)00065-4
  21. O. D. Zolotarenko, E. P. Rudakova, A. D. Zolotarenko, N. Y. Akhanova, M. N. Ualkhanova, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, Yu. O. Tarasenko, and O. O. Havryliuk, Him. Fiz. Tehnol. Poverhni, 13, No. 3: 259 (2022); https://doi.org/10.15407/hftp13.03.259
  22. D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, O. P. Zolotarenko, and M. V. Chimbai, Physical Sciences and Technology, 6, Nos. 1–2: 46 (2019); https://doi.org/10.26577/phst-2019-1-p9
  23. M. Baibarac, I. Baltog, S. Frunza, A. Magrez, D. Schur, and S. Y. Zaginaichenko, Diamond and Related Materials, 32: 72 (2013); https://doi.org/10.1016/j.diamond.2012.12.006
  24. Al. D. Zolotarenko, An. D. Zolotarenko, V. A. Lavrenko, S. Yu. Zaginaichenko, N. A. Shvachko, O. V. Milto, V. B. Molodkin, A. E. Perekos, V. M. Nadutov, and Yu. A. Tarasenko, Carbon Nanomaterials in Clean Energy Hydrogen Systems-II (Dordrecht: Springer: 2011), p. 127; https://doi.org/10.1007/978-94-007-0899-0_10
  25. M. Ualkhanova, A. Y. Perekos, A. G. Dubovoy, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko, N. A. Gavrylyuk, M. T. Gabdullin, T. S. Ramazanov, N. Akhanova, and S. Orazbayev, Journal of Nanoscience and Nanotechnology Applications, 3, No. 3: 1 (2019); https://doi.org/10.18875/2577-7920.3.302
  26. Ol. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, M. V. Chymbai, Yu. O. Tarasenko, I. V. Zagorulko, and A. D. Zolotarenko, Metallofiz. Noveishie Tekhnol., 43, No. 10: 1417 (2021); https://doi.org/10.15407/mfint.43.10.1417
  27. Ol. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, Ì. Sultangazina, N. A. Gavrylyuk, M. V. Chymbai, A. D. Zolotarenko, I. V. Zagorulko, and Yu. O. Tarasenko, Metallofiz. Noveishie Tekhnol., 44, No. 3: 343 (2022); https://doi.org/10.15407/mfint.44.03.0343
  28. Ol. D. Zolotarenko, E. P. Rudakova, N. Y. Akhanova, An. D. Zolotarenko, D. V. Shchur, M. T. Gabdullin, M. Ualkhanova, N. A. Gavrylyuk, M. V. Chymbai, T. V. Myronenko, I. V. Zagorulko, A. D. Zolotarenko, and O. O. Havryliuk, Him. Fiz. Tehnol. Poverhni, 13, No. 4: 415 (2022); https://doi.org/10.15407/hftp13.04.415
  29. Ol. D. Zolotarenko, E. P. Rudakova, An. D. Zolotarenko, N. Y. Akhanova, M. Ualkhanova, D. V. Shchur, M. T. Gabdullin, T. V. Myronenko, A. D. Zolotarenko, M. V. Chymbai, and I. V. Zagorulko, Metallofiz. Noveishie Tekhnol., 45, No. 2: 199 (2023); https://doi.org/10.15407/mfint.45.02.019
  30. D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, and N. S. Anikina., International Journal of Hydrogen Energy, 36, No. 1: 1143 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.087
  31. A. F. Savenko, V. A. Bogolepov, K. A. Meleshevich, S. Yu. Zaginaichenko, M. V. Lototsky, V. K. Pishuk, L. O. Teslenko, and V. V. Skorokhod, NATO Security through Science Series A: Chemistry and Biology (Dordrecht: Springer: 2007), p. 365; https://doi.org/10.1007/978-1-4020-5514-0_47
  32. S. Zaginaichenko and T. Nejat Veziroglu, International Journal of Hydrogen Energy, 33, No. 13: 3330 (2008); https://doi.org/10.1016/j.ijhydene.2008.03.064
  33. D. V. Schur, M. T. Gabdullin, S. Yu. Zaginaichenko, T. N. Veziroglu, M. V. Lototsky, V. A. Bogolepov, and A. F. Savenko, International Journal of Hydrogen Energy, 41, No. 1: 401 (2016).
  34. D. V. Schur, S. Y. Zaginaichenko, and T. N. Veziroglu, International Journal of Hydrogen Energy, 40, No. 6: 2742 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.092
  35. Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Shchur, A. Viziroglu, T. N. Viziroglu, M. T. Gabdullin, N. F. Javadov, An. D. Zolotarenko, and Al. D. Zolotarenko, Hydrogen in Crystals (Kiev: ‘KIM’ Publishing House: 2017).
  36. D. V. Schur, S. Y. Zaginaichenko, A. F. Savenko, V. A. Bogolepov, N. S. Anikina, A. D. Zolotarenko, Z. A. Matysina, T. N. Veziroglu, N. E. Skryabina, NATO Science for Peace and Security Series C: Environmental Security (Dordrecht: Springer: 2011), p. 87; doi:10.1007/978-94-007-0899-0_7
  37. Z. A. Matysina, An. D. Zolonarenko, Al. D. Zolonarenko, N. A. Gavrylyuk, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, and M. T. Gabdullin, Features of the Interaction of Hydrogen with Metals, Alloys and Compounds (Hydrogen Atoms in Crystalline Solids) (Kiev: ‘KIM’ Publishing House: 2022).
  38. D. V. Schur, M. T. Gabdullin, V. A. Bogolepov, A. Veziroglu, S. Y. Zaginaichenko, A. F. Savenko, and K. A. Meleshevich, International Journal of Hydrogen Energy, 41, No. 3: 1811 (2016); https://doi.org/10.1016/j.ijhydene.2015.10.011
  39. Z. A. Matysina, O. S. Pogorelova, and S. Yu. Zaginaichenko, Journal of Physics and Chemistry of Solids, 56, No. 1: 9 (1995); https://doi.org/10.1016/0022-3697(94)00106-5
  40. Z. A. Matysina and S. Yu. Zaginaichenko, International Journal of Hydrogen Energy, 21, Nos. 11–12: 1085 (1996); https://doi.org/10.1016/S0360-3199(96)00050-X
  41. S. Yu. Zaginaichenko, Z. A. Matysina, I. Smityukh, and V. K. Pishuk, Journal of Alloys and Compounds, 330–332: 70 (2002); https://doi.org/10.1016/S0925-8388(01)01661-9
  42. Z. A. Matysina and S. Y. Zaginaichenko, Russian Physics Journal, 59, No. 2: 177 (2016); https://doi.org/10.1007/s11182-016-0757-0
  43. S. Y. Zaginaichenko, D. A. Zaritskii, Z. A. Matysina, T. N. Veziroglu, and L. I. Kopylova, International Journal of Hydrogen Energy, 40, No. 24: 7644 (2015); https://doi.org/10.1016/j.ijhydene.2015.01.089
  44. Z. A. Matysina and S. Y. Zaginaichenko, Physics of Metals and Metallography, 114, No. 4: 308 (2013); https://doi.org/10.1134/S0031918X13010079
  45. Z. A. Matysina, N. A. Gavrylyuk, M. Kartel, A. Veziroglu, T. N. Veziroglu, A. P. Pomytkin, D. V. Schur, T. S. Ramazanov, M. T. Gabdullin, A. D. Zolotarenko, A. D. Zolotarenko, and N. A. Shvachko, International Journal of Hydrogen Energy, 46, No. 50: 25520 (2021); doi:10.1016/j.ijhydene.2021.05.069
  46. D. V. Shchur, S. Y. Zaginaichenko, A. Veziroglu, T. N. Veziroglu, N. A. Gavrylyuk, A. D. Zolotarenko, M. T. Gabdullin, T. S. Ramazanov, A. D. Zolotarenko, and A. D. Zolotarenko, Russian Physics Journal, 64, No. 1: 89 (2021); doi:10.1007/s11182-021-02304-7
  47. S. Yu. Zaginaichenko, Z. A. Matysina, D. V. Schur, and A. D. Zolotarenko, International Journal of Hydrogen Energy, 37, No. 9: 7565 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.006
  48. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, T. N. Veziroglu, A. Veziroglu, M. T. Gabdullin, Al. D. Zolotarenko, and An. D. Zolotarenko, International Journal of Hydrogen Energy, 43, No. 33: 16092 (2018); https://doi.org/10.1016/j.ijhydene.2018.06.168
  49. Z. A. Matysina, S. Y. Zaginaichenko, D. V. Schur, A. D. Zolotarenko, A. D. Zolotarenko, M. T. Gabdulin, L. I. Kopylova, and T. I. Shaposhnikova, Russian Physics Journal, 61, No. 12: 2244 (2019); https://doi.org/10.1007/s11182-019-01662-7
  50. D. V. Schur, A. Veziroglu, S. Yu Zaginaychenko, Z. A. Matysina, T. N. Veziroglu, M. T. Gabdullin, T. S. Ramazanov, An. D. Zolonarenko, and Al. D. Zolonarenko, International Journal of Hydrogen Energy, 44, No. 45: 24810 (2019); https://doi.org/10.1016/j.ijhydene.2019.07.205
  51. Z. A. Matysina, S. Yu. Zaginaichenko, D. V. Schur, Al. D. Zolotarenko, An. D. Zolotarenko and M. T. Gabdulin, Russian Physics Journal, 61, No. 2: 253 (2018); https://doi.org/10.1007/s11182-018-1395-5
  52. Z. A. Matysinaa, An. D. Zolotarenko, Al. D. Zolotarenko, M. T. Kartel, A. Veziroglu, T. N. Veziroglu, N. A. Gavrylyuk, D. V. Schur, M. T. Gabdullin, N. E. Akhanova, T. S. Ramazanov, M. Ualkhanova, and N. A. Shvachko, International Journal of Hydrogen Energy, 48, No. 6: 2271 (2022); https://doi.org/10.1016/j.ijhydene.2022.09.225
  53. Z. A. Matysina, An. D. Zolotarenko, Ol. D. Zolotarenko, T. V. Myronenko, D. V. Schur, E. P. Rudakova, M. V. Chymbai, A. D. Zolotarenko, I. V. Zagorulko, and O. O. Havryliuk, Chemistry, Physics and Technology of Surface, 14, No. 2: 210 (2023); doi:10.15407/hftp14.02.210
  54. Z. A. Matysina and D. V. Shchur, Russian Physics Journal, 44, No. 11: 1237 (2001); https://doi.org/10.1023/A:1015318110874
  55. V. I. Trefilov, D. V. Shchur, V. K. Pishuk, S. Yu. Zaginaichenko, A. V. Choba, and N. R. Nagornaya, Renewable Energy, 16, Nos. 1–4: 757 (1999); https://doi.org/10.1016/S0960-1481(98)00273-0
  56. Yu. M. Lytvynenko and D. V. Shchur, Renewable Energy, 16, Nos. 1–4: 753 (1999); https://doi.org/10.1016/S0960-1481(98)00272-9
  57. D. V. Schur, A. A. Lyashenko, V. M. Adejev, V. B. Voitovich, and S. Yu. Zaginaichenko, International Journal of Hydrogen Energy, 20, No. 5: 405 (1995); https://doi.org/10.1016/0360-3199(94)00077-D
  58. D. V. Schur, V. A. Lavrenko, V. M. Adejev, and I. E. Kirjakova, International Journal of Hydrogen Energy, 19, No. 3: 265 (1994); https://doi.org/10.1016/0360-3199(94)90096-5
  59. S. Y. Zaginaichenko, Z. A. Matysina, D. V. Schur, L. O. Teslenko, and A. Veziroglu, International Journal of Hydrogen Energy, 36, No. 1: 1152 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.088
  60. S. A. Tikhotskii, I. V. Fokin, and D. V. Schur, Physics of the Solid Earth, 47, No. 4: 327 (2011); https://doi.org/10.1134/S1069351311030062
  61. A. D. Zolotarenko, A. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, D. V. Schur, N. A. Gavrylyuk, T. S. Ramazanov, N. Y. Akhanova, and M. T. Gabdullin, International Journal of Hydrogen Energy, 47, No. 11: 7310 (2022); https://doi.org/10.1016/j.ijhydene.2021.03.065
  62. An. D. Zolotarenko, Al. D. Zolotarenko, A. Veziroglu, T. N. Veziroglu, N. A. Shvachko, A. P. Pomytkin, N. A. Gavrylyuk, D. V. Schur, T. S. Ramazanov, and M. T. Gabdullin, International Journal of Hydrogen Energy, 47, No. 11: 7281 (2021); https://doi.org/10.1016/j.ijhydene.2021.03.025
  63. W. Kr?tschmer, L. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature, 347: 354 (1990); https://doi.org/10.1038/347354a0
  64. A. Yu. Ishlinsky, New Polytechnical Dictionary (Great Russian Encyclopedia: 2000), p. 655 (in Russian); https://lib-bkm.ru/10015
  65. Yu. L. Klimontovich, Kinetic Theory of Electromagnetic Processes (Moskva: Nauka: 1980) (in Russian); https://www.studmed.ru/klimontovich-yul-kineticheskaya-teoriya-elektromagnitnyh-processov_b39d57d15f7.html
  66. L. S. Polak, Neravnovesnaya Khimicheskaya Kinetika i Yeyo Primenenie [Non-Equilibrium Chemical Kinetics and Its Application] (Moskva: Nauka: 1979) (in Russian).
  67. L. S. Polak and A. S. Mikhailov, Self-Organization in Non-Equilibrium Physical and Chemical Systems (Moskva: Nauka: 1983) (in Russian).
  68. I. V. Melikhov, Physico-Chemical Evolution of a Solid (Moskva: Binom: 2014) (in Russian).
  69. Yu. L. Klimontovich, Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems (Moskva: Nauka: 1990) (in Russian); https://elib.pstu.ru/Record/RUPSTUbooks202098
  70. V. I. Saranchuk, M. A. Ilyashov, V. V. Oshovsky, and E. V. Saranchuk, Carbon: the Unknown about the Known (Donetsk: UK Center: 2006) (in Russian).
  71. N. Kobayashi, Introduction to Nanotechnology (Moskva: Binom: 2008) (Russian translation); https://www.studmed.ru/kobayasi-vvedenie-v-nanotehnologiyu_994a227f3b5.html
  72. E. A. Katz, Fullerenes, Carbon Nanotubes and Nanoclusters: A Genealogy of Forms and Ideas (Moskva: URSS. Publishing House LKI: 2008) (Russian translation).
  73. Ya. V. Zaulichny, S. S. Petrovskaya, E. A. Graivoronskaya, and Yu. M. Solonin, Carbon Nanomaterials: Electronic Structure and Structure Formation Processes (Kyiv: Naukova Dumka: 2012) (in Russian).
  74. G. M. Butyrin, Highly Porous Carbon Materials (Moskva: Khimiya: 1976) (in Russian); https://www.twirpx.com/file/1662546/
  75. P. N. Dyachkov, Carbon Nanotubes: Structure, Properties, Applications (Moskva: Binom: 2006) (in Russian); https://www.studmed.ru/dyachkov-pn-uglerodnye-nanotrubki-stroenie-svoystva-primeneniya_437ffbf49dc.html
  76. V. S. Ponomarenko, Yu. F. Nazarov, V. P. Sviderskiy, and I. M. Ibragimov, Nanotechnology and Innovative Development (Kharkiv: VD ‘Inzhek’: 2008).
  77. Yu. I. Sementsov, S. L. Revo, and K. O. Ivanenko, Thermal Expansion of Graphite (Kyiv: NVP ‘Interservis’: 2016).
  78. Yu. I. Sementsov, Formation of the Structure and Power of sp2-Carbon Nanomaterials and Functional Composites for Their Participation (Thesis of Disser. for Dr. Phys.-Math. Sci.) (Kyiv: O. O. Chuiko Institute of Surface Chemistry, N.A.S. of Ukraine: 2019) (in Ukrainian).
  79. G. B. Sergeev, Nanochemistry (Moskva: Izd-vo MGU: 2003) (in Russian); https://www.chem.msu.su/rus/books/2001-2010/sergeev-nano/welcome.html
  80. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials (Moskva: KomKniga: 2009) (in Russian); https://www.studmed.ru/suzdalev-ip-nanotehnologiya-fiziko-himiya-nanoklasterov-nanostruktur-i-nanomaterialov_d09247bd8e7.html
  81. N. T. Kartel and Yu. A. Tarasenko, Zeolites and Carbon Materials. ‘Surface Physics and Chemistry’ (Eds. N. T. Kartel and V. Lobanova) (Kiev: A. A. Chuiko Institute of Surface Chemistry, N.A.S. of Ukraine–NPP Interservice LLC: 2018), vol. 2, ch. 22–28, pp. 754–967 (in Russian).
  82. I. A. Tarkovskaya, One Hundred ‘Professions’ of Coal (Kiev: Naukova Dumka: 1970) (in Russian).
  83. V. P. Tereshchenko and N. T. Kartel, Medico-Biological Effects of Nanoparticles: Realities and Forecasts (Kyiv: Naukova Dumka: 2010).
  84. V. I. Trefilov, D. V. Shchur, B. P. Tarasov, Yu. M. Shulga, A. V. Chernogorenko, V. K. Pishuk, and S. Yu. Zaginaichenko, Fullerenes — the Basis of Materials of the Future (Kiev: ADEF: 2001) (in Russian).
  85. A. P. Shpak, Yu. A. Kunitsky, V. A. Prokopenko, and S. Yu. Smyk, Self-Organization Processes in Materials of Different Nature (Kiev: 2004) (in Russian).
  86. A. A. Bogdanov, D. Deininger, and G. A. Dyuzhev, Journal of Technical Physics, 70, No. 5: 1 (2000).
  87. D. V. Schur, A. G. Dubovoy, S. Yu. Zaginaichenko, V. M. Adejv, A. V. Kotko, V. A. Bogolepov, A. F. Savenko, and A. D. Zolotarenko, Carbon, 45, No. 6: 1322 (2007); https://doi.org/10.1016/j.carbon.2007.01.017
  88. A. G. Dubovoi, A. E. Perekos, and K. V. Chuistov, Metallofizika, 6, No. 5: 129 (1984) (in Russian).
  89. A. G. Dubovoi, V. P. Zalutsky, and I. Yu. Ignatiev, Metallofizika, 8, No. 4: 101 (1986) (in Russian).
  90. K. V. Chuistov, A. E. Perekos, V. P. Zalutsky et al., Metallofizika i Noveishie Tekhnologii, 18, No. 8: 18 (1996) (in Russian).
  91. A. G. Dubovoy, A. O. Perekos, V. A. Lavrenko, Yu. M. Rudenko, T. V. Efimova, V. P. Zaluts’kyy, T. V. Ruzhitska, A. V. Kotko, Al. D. Zolotarenko, and An. D. Zolotarenko, Nanosistemi, Nanomateriali, Nanotehnologii, 11, Iss. 1: 131 (2013) (in Russian); https://www.imp.kiev.ua/nanosys/media/pdf/2013/1/nano_vol11_iss1_p0131p0140_2013.pdf
  92. S. Yu. Zaginaichenko, D. V. Shchur, M. T. Gabdullin, N. F. Javadov, Al. D. Zolotarenko, An. D. Zolotarenko, A. D. Zolotarenko, and S. Kh. Mamedova, G. D. Omarova, and Z. T. Mamedova, Alternative Energy and Ecology (ISJAEE), 19–21: 72 (2018); https://doi.org/10.15518/isjaee.2018.19-21.072-090
  93. K. Awasthi, A. Srivastava, and O. N. Srivastava, Journal of Nanoscience and Nanotechnology, 5, No. 10: 1616 (2005); https://doi.org/10.1166/jnn.2005.407
  94. D. Kondepudi and I. Prigogine, Modern Thermodynamics (Chichester–New York: John Wiley & Sons: 1999).
  95. N. M. Emanuel’ and D. G. Knorre, Kurs Khimicheskoi Kinetiki [Course in Chemical Kinetics] (Moskva: Vysshaya Shkola: 1984) (in Russian).
  96. Ya. V. Zaulichny, S. S. Petrovskaya, E. A. Graivoronskaya, and Yu. M. Solonin, Carbon Nanomaterials: Electronic Structure and Structure Formation Processes (Kyiv: Naukova Dumka: 2012).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement