Issues

 / 

2024

 / 

vol. 22 / 

issue 2

 



Download the full version of the article (in PDF format)

B. TURKO, B. SADOVYI, V. VASIL’YEV, Y. ELIYASHEVSKYY, Y. KULYK, A. VAS’KIV, R. BIHUN, V. APOPII, and V. KAPUSTIANYK

Effect of Dopant Concentration and Crystalline Structure on Absorption Edge of ZnO:B Films
239–247 (2024)

PACS numbers: 61.05.cp, 68.37.Ps, 68.35.Ct, 68.55.Ln, 78.20.Ci, 78.66.Li, 78.67.Bf

The crystalline structure and absorption spectra of thin ZnO films with different levels of B doping are studied. The films are deposited on the glass substrates using the radio-frequency magnetron sputtering without targeted-substrates’ heating. The concentration of free charge carriers is estimated. The observed ‘blue’ shift of the fundamental absorption edge in the ZnO:B films with increasing of doping level is explained by the Burstein–Moss effect

KEY WORDS: boron-doped zinc oxide, crystalline structure, absorption edge, optical bandgap, Burstein–Moss effect

DOI:  https://doi.org/10.15407/nnn.22.02.239

REFERENCES
  1. M. Singh and F. Scotognella, Micromachines, 14: 536 (2023); https://doi.org/10.3390/mi14030536
  2. V. B. Kapustianyk, B. I. Turko, V. P. Rudyk, B. Y. Kulyk, and M. S. Rudko, Journal of Applied Spectroscopy, 82: 153 (2015); https://doi.org/10.1007/s10812-015-0079-y
  3. B. Turko, U. Mostovoy, M. Kovalenko, Y. Eliyashevskyi, Y. Kulyk, O. Bovgyra, V. Dzikovskyi, A. Kostruba, R. Vlokh, V. Savaryn, V. Stybel, B. Tsizh, and S. Majevska, Ukr. J. Phys. Opt., 22: 31 (2021); https://doi.org/10.3116/16091833/22/1/31/2021
  4. B. N. Pawar, S. R. Jadkar, and M. G. Takwale, Journal of Physics and Chemistry of Solids, 66: 1779 (2005); https://doi.org/10.1016/j.jpcs.2005.08.086
  5. J.-S. Hur, J. Kim, S. Jang, J.-B. Song, D. Byun, C.-S Son, J. H. Yun, K. H. Yoon, Journal of the Korean Physical Society, 53: 442 (2008); https://doi.org/10.3938/jkps.53.442
  6. T. Kobayashi, K. Yamauchi, T. Mise, and T. Nakada, Jpn. J. Appl. Phys., 51: 10NC09 (2012); https://doi.org/10.1143/JJAP.51.10NC09
  7. K. Mahmood, D. Song, and S. B. Park, Surface & Coatings Technology, 206: 4730 (2012); https://doi.org/10.1016/j.surfcoat.2012.01.047
  8. L. Pholds, M. E. Samiji, N. R. Mlyuka, B. S. Richards, and R. T. Kivaisi, Abstracts of 28th European Photovoltaic Solar Energy Conference and Exhibition (28th EU PVSEC) (30 September–4 October, 2013) (Paris: 2013), đ. 2311.
  9. Y. H. Heo, D. J. You, H. Lee, S. Lee, and H.-M. Lee, Solar Energy Materials & Solar Cells, 122: 107 (2014); https://doi.org/10.1016/j.solmat.2013.11.010
  10. D. Garcia-Alonso, S. E. Potts, C. A. A. van Helvoirt, M. A. Verheijen, and W. M. M. Kessels, J. Mater. Chem. C, 3: 3095 (2015); https://doi.org/10.1039/c4tc02707h
  11. F.-C. Chiu and W.-P. Chiang, Materials, 8: 5795 (2015); https://doi.org/10.3390/ma8095276
  12. H. A. Gatz, D. Koushik, J. K. Rath, W. M. M. Kessels, and R. E. I. Schropp, Energy Procedia, 92: 624 (2016); https://doi.org/10.1016/j.egypro.2016.07.028
  13. U. R. Dash, M. K. R. Khan, M. M. Rahman, and M. Kamruzzaman, IOP Conf. Series: Journal of Physics: Conf. Series, 1086: 012005 (2018); https://doi.org/10.1088/1742-6596/1086/1/012005
  14. S. Pat, R. Mohammadigharehbagh, C. Musaoglu, S. ?zen, and ?. Korkmaz, Mater. Res. Express., 5: 066419 (2018); https://doi.org/10.1088/2053-1591/aacc9a
  15. H. J. Ali, Al-Mustansiriyah Journal of Science, 29: 150 (2018); http://doi.org/10.23851/mjs.v29i1.55
  16. T. Hurma, Journal of Molecular Structure, 1189: 1 (2019); https://doi.org/10.1016/j.molstruc.2019.03.096
  17. R. H. Jabbar, I. H. Hilal, and M. A. Abdulsattar, IOP Conf. Series: Materials Science and Engineering, 928: 072035 (2020); https://doi.org/10.1088/1757-899X/928/7/072035
  18. L. P. Mwakyusa, N. R. Mlyuka, and M. E. Samiji, Tanz. J. Sci., 48, No. 1: 148 (2022); https://doi.org/10.4314/tjs.v48i1.14
  19. G.-J. Chen, S.-R. Jian, and J.-Y. Juang, Coatings, 8: 266 (2018); https://doi.org/10.3390/coatings8080266
  20. B. Ňurko, V. Vasiliev, Y. Eliyashevskyy, M. Rudko, N. Shvets, A. Vaskiv, L. Hrytsak, V. Kapustianyk, A. Kostruba, and S. Semak, Journal of Physical Studies, 26: 4402 (2022); https://doi.org/10.30970/jps.26.4402
  21. X. Li, D. Jiang, J. Zhang, Q. Lin, Z. Chen, and Z. Huang, Journal of the European Ceramic Society, 33: 1655 (2013); https://doi.org/10.1016/j.jeurceramsoc.2013.02.001
  22. S. D. Senol, O. Ozturk, and C. Terzioglu, Ceramics International, 41: 11194 (2015); https://doi.org/10.1016/j.ceramint.2015.05.069
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement