Issues

 / 

2024

 / 

vol. 22 / 

issue 1

 



Download the full version of the article (in PDF format)

KHALAF AJAJ, ABDULLAH M. ALI, and MUSHTAQ ABED AL-JUBBORI

Characterization and Evaluation of the Antimicrobial Activity of CuO Nanoparticles Prepared by Pulse Laser Ablation in Double-Distilled Water
209–227 (2024)

PACS numbers: 78.40.-q, 79.20.Eb, 87.64.Cc, 87.64.Ee, 87.19.xb, 87.50.W-, 87.85.Rs

In the current research, Q-switched Nd:YAG-laser ablation is used to create the copper-oxide nanoparticles (NPs). A disc-shaped copper target is subjected to the ablation procedure, while it is submerged in double-distilled water. The ablation is carried out with pulse counts ranging from 100, 200, 300, 400, and 500 with two different energy levels, namely, 200 mJ and 400 mJ. Transmission electron microscopy (TEM), x-ray diffraction analysis (XRD), and UV-vis spectrophotometry are used to determine the morphological and optical properties of nanoparticles. An increase in the absorbance spectrum with an increase in the number of pulses indicates an increase in the concentration of copper-oxide nanoparticles. The peaks of surface-plasmon resonance at 217 nm are seen in the absorption spectra as the laser pulses increased. A slight reduction in the optical band gap is occurred too. CuO-NPs’ formation is verified by XRD analysis, which also reveals that the copper-oxide NPs’ structure is a monoclinic lattice. Further, the results of the TEM and UV-vis analyses show that there are presented CuO nanoparticles. CuO nanoparticles, which are nearly spherical, are found, according to the findings of the TEM and UV-vis analyses. When 200 mJ and 400 mJ of energy are used, it is discovered that the average diameters of these nanoparticles are of about 46 nm and 52 nm, respectively. Additionally, our study results show that CuO NPs at 200 mJ are more effective for inhibiting S. aureus and E. coli than they are at 400 mJ with the same number of pulses

KEY WORDS: copper-oxide nanoparticles, UV-visible laser ablation, XRD, TEM, particle size, antibacterial activity

DOI:  https://doi.org/10.15407/nnn.22.01.209

REFERENCES
  1. I. Khan, K. Saeed, and I. Khan, Arabian Journal of Chemistry, 12, Iss. 7: 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
  2. A. Abedini, A. A. Bakar, F. Larki, P. S. Menon, M. S. Islam, and S. Shaari, Nanoscale Research Letters, 11: 1 (2016); https://doi.org/10.1186/s11671-016-1500-z
  3. D. Zhang, B. G?kce, and S. Barcikowski, Chemical Reviews, 117, No. 5: 3990 (2017); https://doi.org/10.1021/acs.chemrev.6b00468
  4. S. M. Arakelyan, V. P. Veiko, S. V. Kutrovskaya, A. O. Kucherik, A. V. Osipov, T. A. Vartanyan, and T. E. Itina, Journal of Nanoparticle Research, 18, Iss. 6: 1 (2016); https://doi.org/10.1007/s11051-016-3468-0
  5. T. T. P. Nguyen, R. Tanabe, and Y. Ito, Optics & Laser Technology, 100: 21 (2018); https://doi.org/10.1016/j.optlastec.2017.09.021
  6. T. T. P. Nguyen, R. Tanabe, and Y. Ito, Applied Physics A, 116: 1109 (2013); https://doi.org/10.1007/s00339-013-8193-2
  7. I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, Physics of Fluids, 13, Iss. 10: 2805 (2001); https://doi.org/10.1063/1.1401810
  8. S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, and S. Barcikowski, Applied Physics Letters, 101, Iss. 10: 103104 (2012); https://doi.org/10.1063/1.4750250
  9. I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, Experimental Thermal and Fluid Science, 26, Iss. 6–7: 731 (2002); https://doi.org/10.1016/S0894-1777(02)00182-6
  10. A. Letzel, B. Go?kce, P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, and S. Barcikowski, The Journal of Physical Chemistry C, 121: 5356 (2017); https://doi.org/10.1021/acs.jpcc.6b12554
  11. M. Q. Jiang, X. Q. Wu, Y. P. Wei, G. Wilde, and L. H. Dai, Extreme Mechanics Letters, 11: 24 (2017); https://doi.org/10.1016/j.eml.2016.11.014
  12. H. Zeng, X. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, Advanced Functional Materials, 22, Iss. 7: 1333 (2012); https://doi.org/10.1002/adfm.201102295
  13. J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, Progress in Materials Science, 87: 140 (2017); https://doi.org/10.1016/j.pmatsci.2017.02.004
  14. S. Bashir, M. S. Rafique, C. S. Nathala, and W. Husinsky, Applied Surface Science, 290: 53 (2014); https://doi.org/10.1016/j.apsusc.2013.10.187
  15. M. Curcio, A. De Bonis, A. Santagata, A. Galasso, and R. Teghil, Optics & Laser Technology, 138: 106916 (2021); https://doi.org/10.1016/j.optlastec.2021.106916
  16. A. Baladi and R. S. Mamoory, Applied Surface Science, 256, Iss. 24: 7559 (2010); https://doi.org/10.1016/j.apsusc.2010.05.103
  17. S. A. Al-Mamun, R. Nakajima, and T. Ishigaki, Journal of Colloid and Interface Science, 392: 172 (2013); https://doi.org/10.1016/j.jcis.2012.10.027
  18. S. Besner, A. V. Kabashin, and M. Meunier, Applied Physics A, 88, No. 2: 269 (2007); https://doi.org/10.1007/s00339-007-4001-1
  19. G. W. Yang, Progress in Materials Science, 52, Iss. 4: 648 (2007); https://doi:10.1016/j.pmatsci.2006.10.016
  20. R. C. Ashoori, Nature, 379: 413 (1996); https://doi.org/10.1038/379413a0
  21. A. P. Alivisatos, Science, 271, Iss. 5251: 933 (1996); https://doi.org/10.1126/science.271.5251.933
  22. A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O’Mullane, and K. Kalantar-Zadeh, Journal of Materials Chemistry C, 2, Iss. 27: 5247 (2014); https://doi.org/10.1039/C4TC00345D
  23. H. Azadi, H. D. Aghdam, R. Malekfar, and S. M. Bellah, Results in Physics, 15: 102610 (2019); https://doi.org/10.1016/j.rinp.2019.102610
  24. J. Prikulis, F. Svedberg, M. K?ll, J. Enger, K. Ramser, M. Goks?r, and D. Hanstorp, Nano Letters, 4, No. 1: 115 (2004); https://doi.org/10.1021/nl0349606
  25. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, and A. Memic, International Journal of Nanomedicine, 7: 3527 (2012); http://dx.doi.org/10.2147/IJN.S29020
  26. A. F. Halbus, T. S. Horozov, and V. N. Paunov, ACS Applied Materials & Interfaces, 11, No. 13: 12232 (2019); https://doi.org/10.1021/acsami.8b21862
  27. J. Tauc, R. Grigorvici, and A. Vancu, physica status solidi (b), 15, Iss. 2: 627 (1966); https://doi.org/10.1002/pssb.19660150224
  28. Triloki, R. Rai, and B. K. Singh, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 785: 70 (2013); http://dx.doi.org/10.1016/j.nima.2015.02.059
  29. M. D. Migahed and H. M. Zidan, Current Applied Physics, 6, Iss. 1: 91 (2006); https://doi:10.1016/j.cap.2004.12.009
  30. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P. K. Sharma, and A. Sharma, Materials Chemistry and Physics, 139, Iss. 2–3: 802 (2013); https://doi:10.1016/j.matchemphys.2013.02.035
  31. D. Babu, P. Philominathan, and K. Murali, Optik, 186: 350 (2019); https://doi.org/10.1016/j.ijleo.2019.03.048
  32. V. R. Kumar, P. R. S. Wariar, and J. Koshy, Crystal Research and Technology, 45, Iss. 6: 619 (2010); https://doi.org/10.1002/crat.201000048
  33. A. A. Menazea, Radiation Physics and Chemistry, 168: 108616 (2020); https://doi.org/10.1016/j.radphyschem.2019.108616
  34. Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials (Ed. G. Yang) (New York: Jenny Stanford Publishing: 2012); https://doi.org/10.1201/b11623
  35. J. Zhang, J. Claverie, M. Chaker, and D. Ma, Chem. Phys. Chem., 18, Iss. 9: 986 (2017); https://doi.org/10.1002/cphc.201601220
  36. H. Zeng, W. Cai, Y. Li, J. Hu, and P. Liu, The Journal of Physical Chemistry B, 109, No. 39: 18260 (2005); https://doi.org/10.1021/jp052258n
  37. H. Zeng, X. Xu, Y. Bando, U. K. Gautam, T. Zhai, X. Fang, B. Liu, and D. Golberg, Advanced Functional Materials, 19, Iss. 19: 3165(2009); https://doi.org/10.1002/adfm.200900714
  38. K. Y. Niu, J. Yang, S. A. Kulinich, J. Sun, H. Li, and X. W. Du, Journal of the American Chemical Society, 132, No. 28: 9814 (2010); https://doi.org/10.1021/ja102967a
  39. M. A. Gondal, T. F. Qahtan, M. A. Dastageer, T. A. Saleh, Y. W. Maganda, and D. H. Anjum, Applied Surface Science, 286: 149 (2013); https://doi.org/10.1016/j.apsusc.2013.09.038
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement