Download the full
version of the article (in PDF format)
KHALAF AJAJ, ABDULLAH M. ALI, and
MUSHTAQ ABED AL-JUBBORI
Characterization and Evaluation of the
Antimicrobial Activity of CuO Nanoparticles Prepared by Pulse Laser Ablation in Double-Distilled
Water
209–227 (2024)
PACS numbers: 78.40.-q, 79.20.Eb, 87.64.Cc, 87.64.Ee, 87.19.xb, 87.50.W-, 87.85.Rs
In the current research, Q-switched Nd:YAG-laser ablation is used to create the
copper-oxide nanoparticles (NPs). A disc-shaped copper target is subjected to the ablation procedure, while
it is submerged in double-distilled water. The ablation is carried out with pulse counts ranging from 100,
200, 300, 400, and 500 with two different energy levels, namely, 200 mJ and 400 mJ. Transmission electron
microscopy (TEM), x-ray diffraction analysis (XRD), and UV-vis spectrophotometry are used to determine the
morphological and optical properties of nanoparticles. An increase in the absorbance spectrum with an
increase in the number of pulses indicates an increase in the concentration of copper-oxide nanoparticles.
The peaks of surface-plasmon resonance at 217 nm are seen in the absorption spectra as the laser pulses
increased. A slight reduction in the optical band gap is occurred too. CuO-NPs’ formation is verified by XRD
analysis, which also reveals that the copper-oxide NPs’ structure is a monoclinic lattice. Further, the
results of the TEM and UV-vis analyses show that there are presented CuO nanoparticles. CuO nanoparticles,
which are nearly spherical, are found, according to the findings of the TEM and UV-vis analyses. When 200 mJ
and 400 mJ of energy are used, it is discovered that the average diameters of these nanoparticles are of
about 46 nm and 52 nm, respectively. Additionally, our study results show that CuO NPs at 200 mJ are more
effective for inhibiting S. aureus and E. coli than they are at 400 mJ with the same number of pulses
KEY WORDS: copper-oxide nanoparticles, UV-visible laser ablation, XRD, TEM,
particle size, antibacterial activity
DOI: https://doi.org/10.15407/nnn.22.01.209
REFERENCES
- I. Khan, K. Saeed, and I. Khan, Arabian Journal of Chemistry, 12, Iss. 7: 908 (2019); https://doi.org/10.1016/j.arabjc.2017.05.011
- A. Abedini, A. A. Bakar, F. Larki, P. S. Menon, M. S. Islam, and S. Shaari, Nanoscale Research Letters, 11: 1 (2016); https://doi.org/10.1186/s11671-016-1500-z
- D. Zhang, B. G?kce, and S. Barcikowski, Chemical Reviews, 117, No. 5: 3990 (2017); https://doi.org/10.1021/acs.chemrev.6b00468
- S. M. Arakelyan, V. P. Veiko, S. V. Kutrovskaya, A. O. Kucherik, A. V. Osipov, T. A. Vartanyan, and T. E. Itina, Journal of Nanoparticle Research, 18, Iss. 6: 1 (2016); https://doi.org/10.1007/s11051-016-3468-0
- T. T. P. Nguyen, R. Tanabe, and Y. Ito, Optics & Laser Technology, 100: 21 (2018); https://doi.org/10.1016/j.optlastec.2017.09.021
- T. T. P. Nguyen, R. Tanabe, and Y. Ito, Applied Physics A, 116: 1109 (2013); https://doi.org/10.1007/s00339-013-8193-2
- I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, Physics of Fluids, 13, Iss. 10: 2805 (2001); https://doi.org/10.1063/1.1401810
- S. Ibrahimkutty, P. Wagener, A. Menzel, A. Plech, and S. Barcikowski, Applied Physics Letters, 101, Iss. 10: 103104 (2012); https://doi.org/10.1063/1.4750250
- I. Akhatov, N. Vakhitova, A. Topolnikov, K. Zakirov, B. Wolfrum, T. Kurz, O. Lindau, R. Mettin, and W. Lauterborn, Experimental Thermal and Fluid Science, 26, Iss. 6–7: 731 (2002); https://doi.org/10.1016/S0894-1777(02)00182-6
- A. Letzel, B. Go?kce, P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, and S. Barcikowski, The Journal of Physical Chemistry C, 121: 5356 (2017); https://doi.org/10.1021/acs.jpcc.6b12554
- M. Q. Jiang, X. Q. Wu, Y. P. Wei, G. Wilde, and L. H. Dai, Extreme Mechanics Letters, 11: 24 (2017); https://doi.org/10.1016/j.eml.2016.11.014
- H. Zeng, X. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, Advanced Functional Materials, 22, Iss. 7: 1333 (2012); https://doi.org/10.1002/adfm.201102295
- J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, Progress in Materials Science, 87: 140 (2017); https://doi.org/10.1016/j.pmatsci.2017.02.004
- S. Bashir, M. S. Rafique, C. S. Nathala, and W. Husinsky, Applied Surface Science, 290: 53 (2014); https://doi.org/10.1016/j.apsusc.2013.10.187
- M. Curcio, A. De Bonis, A. Santagata, A. Galasso, and R. Teghil, Optics & Laser Technology, 138: 106916 (2021); https://doi.org/10.1016/j.optlastec.2021.106916
- A. Baladi and R. S. Mamoory, Applied Surface Science, 256, Iss. 24: 7559 (2010); https://doi.org/10.1016/j.apsusc.2010.05.103
- S. A. Al-Mamun, R. Nakajima, and T. Ishigaki, Journal of Colloid and Interface Science, 392: 172 (2013); https://doi.org/10.1016/j.jcis.2012.10.027
- S. Besner, A. V. Kabashin, and M. Meunier, Applied Physics A, 88, No. 2: 269 (2007); https://doi.org/10.1007/s00339-007-4001-1
- G. W. Yang, Progress in Materials Science, 52, Iss. 4: 648 (2007); https://doi:10.1016/j.pmatsci.2006.10.016
- R. C. Ashoori, Nature, 379: 413 (1996); https://doi.org/10.1038/379413a0
- A. P. Alivisatos, Science, 271, Iss. 5251: 933 (1996); https://doi.org/10.1126/science.271.5251.933
- A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O’Mullane, and K. Kalantar-Zadeh, Journal of Materials Chemistry C, 2, Iss. 27: 5247 (2014); https://doi.org/10.1039/C4TC00345D
- H. Azadi, H. D. Aghdam, R. Malekfar, and S. M. Bellah, Results in Physics, 15: 102610 (2019); https://doi.org/10.1016/j.rinp.2019.102610
- J. Prikulis, F. Svedberg, M. K?ll, J. Enger, K. Ramser, M. Goks?r, and D. Hanstorp, Nano Letters, 4, No. 1: 115 (2004); https://doi.org/10.1021/nl0349606
- A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, and A. Memic, International Journal of Nanomedicine, 7: 3527 (2012); http://dx.doi.org/10.2147/IJN.S29020
- A. F. Halbus, T. S. Horozov, and V. N. Paunov, ACS Applied Materials & Interfaces, 11, No. 13: 12232 (2019); https://doi.org/10.1021/acsami.8b21862
- J. Tauc, R. Grigorvici, and A. Vancu, physica status solidi (b), 15, Iss. 2: 627 (1966); https://doi.org/10.1002/pssb.19660150224
- Triloki, R. Rai, and B. K. Singh, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 785: 70 (2013); http://dx.doi.org/10.1016/j.nima.2015.02.059
- M. D. Migahed and H. M. Zidan, Current Applied Physics, 6, Iss. 1: 91 (2006); https://doi:10.1016/j.cap.2004.12.009
- I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P. K. Sharma, and A. Sharma, Materials Chemistry and Physics, 139, Iss. 2–3: 802 (2013); https://doi:10.1016/j.matchemphys.2013.02.035
- D. Babu, P. Philominathan, and K. Murali, Optik, 186: 350 (2019); https://doi.org/10.1016/j.ijleo.2019.03.048
- V. R. Kumar, P. R. S. Wariar, and J. Koshy, Crystal Research and Technology, 45, Iss. 6: 619 (2010); https://doi.org/10.1002/crat.201000048
- A. A. Menazea, Radiation Physics and Chemistry, 168: 108616 (2020); https://doi.org/10.1016/j.radphyschem.2019.108616
- Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials (Ed. G. Yang) (New York: Jenny Stanford Publishing: 2012); https://doi.org/10.1201/b11623
- J. Zhang, J. Claverie, M. Chaker, and D. Ma, Chem. Phys. Chem., 18, Iss. 9: 986 (2017); https://doi.org/10.1002/cphc.201601220
- H. Zeng, W. Cai, Y. Li, J. Hu, and P. Liu, The Journal of Physical Chemistry B, 109, No. 39: 18260 (2005); https://doi.org/10.1021/jp052258n
- H. Zeng, X. Xu, Y. Bando, U. K. Gautam, T. Zhai, X. Fang, B. Liu, and D. Golberg, Advanced Functional Materials, 19, Iss. 19: 3165(2009); https://doi.org/10.1002/adfm.200900714
- K. Y. Niu, J. Yang, S. A. Kulinich, J. Sun, H. Li, and X. W. Du, Journal of the American Chemical Society, 132, No. 28: 9814 (2010); https://doi.org/10.1021/ja102967a
- M. A. Gondal, T. F. Qahtan, M. A. Dastageer, T. A. Saleh, Y. W. Maganda, and D. H. Anjum, Applied Surface Science, 286: 149 (2013); https://doi.org/10.1016/j.apsusc.2013.09.038
.
|