Download the full
version of the article (in PDF format)
AHMED FILAYIH HASSAN
Preparation and Characterization of
Nanofilm-Coated Modified Electrodes and Their Use in Valsartan Drug Analysis
197–207 (2024)
PACS numbers: 68.37.Hk, 68.37.Ps, 82.35.Np, 82.45.Yz, 87.64.Dz, 87.80.Dj, 87.85.Rs
The use of nanomaterials is a modern trend in electrochemical analysis because of the ease
and accuracy of the analysis that, in addition, being non-destructive to the samples, gives the possibility
of repeating the analysis to obtain better results. In this research, films of a co-conductive polymer of
pyrrole and one of its derivatives are fabricated by docking on a graphite substrate. The film and the
substrate form a modified electrode described by EIS and CV in the presence and absence of valsartan. Using
a modified electrode, the concentration of valsartan is determined in titres and blood samples of patients
with a standard deviation (SD=0.6). The quantitative and detection limit are LOQ=6 µM and LOD=1.8 µM,
respectively. DPV with standard addition method has standard deviation (SD=0.34). The new method succeeds
in being more accurate with LOQ=3.4 µM and LOD=1.1 µM, respectively. F-test proves that the HPLC method
is not better than DPV and DPV with modified standard addition methods in determining the drug concentration
of valsartan. The modified standard addition method is probably the best
KEY WORDS: polymer thin films, anchoration, modified electrode, differential
pulse voltammetry, valsartan
DOI: https://doi.org/10.15407/nnn.22.01.197
REFERENCES
- A. Vali, H. Z. Malayeri, M. Azizi, and H. Choi, Applied Catalysis B, 266, Iss. 1: 118 (2020); https://10.1016/j.apcatb.2020.118646
- T. Hazhir, B. Abbas, and W. Joseph, Chemical Society Reviews, 1, Iss. 1: 127 (2020); doi:10.1039/D0CS00304B
- Sriparna Dutta and R. K. Sharma, Separation Science and Technology, 11: 371 (2019); https://doi.org/10.1016/B978-0-12-815730-5.00015-6
- A. R. Harris, D. B. Grayden, and S. E. John, Micromachines, 14, Iss. 1: 722 (2023); doi:10.3390/mi14040722
- A. Sulciute, K. Nishimura, E. Gilshtein, F. Cesano, G. Viscardi, A. G. Nasibulin, Y. Ohno, and S. J. Rackauskas, Phys. Chem. C, 1, Iss. 125: 1472 (2021); doi:10.1021/acs.jpcc.0c08459
- C. Steinem, A. Janshoff, H. J. Galla, and M. Sieber, Bioelectrochemistry and Bioenergetics, 42, Iss. 2: 213 (1997); doi:10.3390/s80314000
- A. Al-Hamdan, A. Al-Falah, and F. Al-Deri, Kuwait Journal of Science, 48, Iss. 3: 1 (2021); doi:10.48129/kjs.v48i3.9624
- A. Al-Hamdan, A. Al-Falah, and F. Al-Deri, Int. J. Thin. Fil. Sci. Tec., 10, No. 2: 101 (2021); doi:10.18576/ijtfst/100205
- A. Al-Hamdan, A. Al-Falah, F. Al-Deri, and I. Al-ghoraibi, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 1: 195 (2022); https://doi.org/10.15407/nnn.20.01.195
- A. Al-Hamdan, A. Al-Falah, and F. Al-Deri, Int. J. Thin. Fil. Sci. Tec., 11, Iss. 2: 153 (2022); doi:10.18576/ijtfst/110201
- A. Al-Hamdan, A. Al-Falah, F. Al-Deri, and M. Al-Kheder, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 4: 913 (2021); https://doi.org/10.15407/nnn.19.04.913
- S. Saha, M. Johnson, F. Altayaran, Y. Wang, D. Wang, and Q. Zhang, Electrochem., 1, Iss. 3: 286 (2020); doi:10.3390/electrochem1030019
- K. S. Lakshmi and L. Sivasubramanian, J. Chil. Chem. Soc., 55, Iss. 2: 223 (2010); doi:10.4067/S0717-97072010000200017
- Y. Hoshina and T. Kobayashi, Engineering, 4, Iss. 3: 139 (2012); doi:10.4236/eng.2012.43018
.
|