Issues

 / 

2024

 / 

vol. 22 / 

issue 1

 



Download the full version of the article (in PDF format)

N.V. KRISHNA PRASAD and N. MADHAVI

Metamaterial Sensors in Liquid Detection: An Illustrious Review
119–132 (2024)

PACS numbers: 07.07.Df, 78.67.Pt, 81.05.Xj, 81.20.Ym, 84.40.Ba

Liquid detection has been one of the buzzwords that refer to sensing of various liquids, which include water, chemicals, oils, etc. This detection gains more significance with the advent of metamaterials. Metamaterials are proved well suited in antenna designing, cloaking devices, solar cells, and sensors. Many papers reported metamaterial sensors, which can detect liquid chemicals, oils, etc. through shift in resonance frequency. Very few papers reported the applications of metamaterial sensors in water treatment. Water purification is one of the prime essentials for the existence of healthy humankind. It can be used to remove unwanted chemicals, contaminants and gases from water. The process of water purification can be done with various methods such as thermal, adsorption, distillation, desalination, reverse osmosis, etc. The main aim is to produce water required for specific purpose. In this context, role of metamaterials in water purification is of prime significance. Keeping this in view, an attempt is made to review the importance of metamaterial sensors in liquid detection along with water purification and its importance in comparison with earlier techniques already available

KEY WORDS: metamaterial (MTM) sensors, liquid detection, water purification, sludge volume index, finite integration technique (FIT)

DOI:  https://doi.org/10.15407/nnn.22.01.119

REFERENCES
  1. V. G. Veselago, Sov. Phys. Usp., 10, No. 4: 509 (1968).
  2. R. A. Shelby, D. R. Smith, and S. Schultz, Science, 292, No. 5514: 77 (2001).
  3. Wojciech Jan Krzysztofik and Thanh Nghia Cao, Metamaterials in Application to Improve Antenna Parameters (Ed. Josep Canet-Ferrer) (IntechOpen: 2018); doi:10.5772/intechopen.80636https://www.intechopen.com/books/metamaterials-and-metasurfaces/metamaterials-in-application-to-improve-antenna-parameters/
  4. Pekka Alitalo and Sergei Tretyakov, Materials Today, 12, No. 3: 22 (2009); https://doi.org/10.1016/S1369-7021(09)70072-0
  5. M?rio G. Silveirinha, Andrea Al?, and Nader Engheta, Phys. Rev. E, 75, No. 3: 036603 (2007); https://doi.org/10.1103/PhysRevE.75.036603
  6. Ulf Leonhardt, Science, 312, No. 5781: 1777 (2006); http://doir.org.10.1126/science.1126493
  7. J. B. Pendry, D. Schurig, and D. R. Smith, Science, 312, No. 5781: 1780 (2006); http://doi.org.10.1126/science.1125907
  8. Baile Zhang, Bae-Ian Wu, Hongsheng Chen, and Jin Au Kong, Phys. Rev. Lett., 101: 063902 (2008); https://doi.org/10.1103/PhysRevLett.101.063902
  9. Min Yan, Zhichao Ruan, and Min Qiu, Phys. Rev. Lett., 99: 233901 (2007); https://doi.org/10.1103/PhysRevLett.99.233901
  10. Pekka Alitalo, Olli Luukkonen, Liisi Jylha, Jukka Venermo, and Sergei A. Tretyakov, IEEE Transactions on Antennas and Propogation, 56, No. 2: 416 (2008); doi:10.1109/TAP.2007.915469
  11. P. Ufimtsev, IEEE Antennas Propag. Mag., 56, No. 12: 3883 (2008); doi:10.1109/TAP.2008.2007397
  12. J. B. Pendry, D. Schurig, and D. R. Smith, Science, 312, No. 5781: 1780 (2006); doi:10.1126/science.1125907
  13. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science, 314, No. 5801: 977 (2006); doi:10.1126/science.1133628
  14. Guan Xia Yu, Tie Jun Cui, and Weixiang Jiang, J. Infrared Millim. Terahertz Waves 30, No. 6: 633 (2009); doi:10.1007/s10762-009-9484-8
  15. Marco Rahm, David Schurig, Daniel A. Roberts, Steven A. Cummer, David R. Smith, and John B. Pendry, Photonics Nanostructures, 6: 87 (2008); doi:10.1016/j.photonics.2007.07.013
  16. Yun Lai, Jack Ng, HuanYang Chen, DeZhuan Han, JunJun Xiao, Zhao-Qing Zhang, and C. T. Chan, Phys. Rev. Lett., 102, Iss. 25: 253902 (2009); doi:10.1103/PhysRevLett.102.253902
  17. Yun Lai, Jack Ng, HuanYang Chen, DeZhuan Han, JunJun Xiao, Zhao-Qing Zhang, and C. T. Chan, Phys. Rev. Lett., 102, Iss. 9: 093901 (2009); doi:10.1103/PhysRevLett.102.253902
  18. Siming Yang, Peng Liu, Mingda Yang, Qiugu Wang, Jiming Song and Liang Dong, Scientific Reports, 6, No. 1: 21921 (2016); doi:10.1038/srep21921
  19. Guozhi Zhao, Shihua Bi, Mowen Niu, and Yancheng Cui, Materials Today Communications, 21: 100603 (2019); https://doi.org/10.1016/j.mtcomm.2019.100603
  20. Yang Liu,Yitung Chen, Jichun Li, Tzu-chem Hung,Jianping Li. Solar Energy, 86, No. 5: 1586 (2012); doi:10.1016/j.solener.2012.02.021
  21. A. Dhar, M. Choudhuri, A. B. Roy, P. Banerjee, A. Kundu, Materials Today Proceedings, 5, No. 11: 23203 (2018); https://doi.org/10.1016/j.matpr.2018.11.051
  22. Philippe Horvath and Rodolphe Barrangou, Science, 327, No. 5962: 167 (2010); doi:10.1126/science.1179555
  23. Zoran Jak?i?, Olga Jak?i?, Zoran Djuri?, and Christoph Kment, J. Opt. A: Pure Appl., 9, No. 9: 377 (2007); doi:10.1088/1464-4258/9/9/S16
  24. J. B. Pendry, Phys. Rev. Lett., 85, No. 18: 3966 (2000); https://doi.org/10.1103/PhysRevLett.85.3966
  25. I. Yadgar, A. L. Deng, H. Luo, S. Huang, M. Karaaslan, O.Alt?nta?, M. Bak?r, F. F. Muhammadsharif, H. N. Awl, C. Sabah, K. S. L. Al-badri, Journal of Materials Research and Technology, 9, No. 5: 10291 (2020); https://doi.org/10.1016/j.jmrt.2020.07.034
  26. Sajal Agarwal and Y. K. Prajapati, Optik — International Journal for Light and Electron Optic, 205: 164276 (2020); https://doi.org/10.1016/j.ijleo.2020.164276
  27. Mehdi Aslinezhad, Optics Communications, 463: 125411 (2020); https://doi.org/10.1016/j.optcom.2020.125411
  28. Mustafa Suphi Gulsu, Fulya Bagci, Sultan Can, Asim Egemen Yilmaz, and Baris Akaoglu, Sensors and Actuators A: Physical, 312: 112139 (2020); https://doi.org/10.1016/j.sna.2020.112139
  29. Y. I. Abdulkarim, L. Deng, O. Alt?nta?, E. Unal, and M. Karaaslan, Physica E: Low-Dimensional Systems and Nanostructures, 114: 113593 (2019); https://doi.org/10.1016/j.physe.2019.113593
  30. R. J. LeBlanc, P. Matthews, and R. P. Richard, Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management. Moving Forward the Sustainable and Welcome Uses of a Global Resource (Nairobi: United Nations Human Settlements Programme (UN-HABITAT): 2008).
  31. S. M. Khopkar, Environmental Pollution Monitoring And Control (New Delhi: New Age International: 2004); p. 299.
  32. P. V. Kovacs, B. Lemmer, G. K-Szabo, C. Hodur, and S. Beszedes, Water Science and Technology, 77, No. 9: 2284 (2018); https://doi.org/10.2166/wst.2018.144
  33. C. Eskicioglu, N. Terzian, J. Kennedy, R. Droste, and M. Hamoda, Water Research, 41, No. 11: 2457 (2007); https://doi.org/10.1016/j.watres.2007.03.008
  34. J. S. Bobowski, T. Johnson, and C. Eskicioglu, Progress in Electromagnetics Research Letters, 29: 139 (2012); https://doi.org/10.2528/pierl11120304
  35. R. Bogue, Sensor Review, 37, No. 3: 305 (2017); https://doi.org/10.1108/SR-12-2016-0281
  36. D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, Physical Review Letters, 84, No. 18: 4184 (2000); https://doi.org/10.1103/PhysRevLett.84.4184
  37. J. J. Yang, M. Huang, C. F. Yang, and J. Yu, European Physical Journal D, 61, No. 3: 731 (2011); doi:10.1140/epjd/e2010-10507-2
  38. David Shrekenhamer, Wen-Chen Chen, and Willie J. Padilla, Phys. Rev. Lett., 110, No. 17: 177403 (2013); doi:10.1103/PhysRevLett.110.177403
  39. Ankit Vora, Jephias Gwamuri, Nezih Pala, Anand Kulkarni, Joshua M. Pearce, and Durdu ?. G?ney, Scientific Reports, 4: 4901 (2014); doi:10.1038/srep04901
  40. Thamer S. Almoneef and Omar M. Ramahi, Progress In Electromagnetics Research, 146: 109 (2014); doi:10.2528/PIER14031603
  41. M. Bak?r, M. Karaaslan, F. Dincer, K. Delihacioglu, and C. Sabah, Journal of Materials Science: Materials in Electronics, 27: 12091 (2016); doi:10.1007/s10854-016-5359-7
  42. M. T. Islam, M. M. Islam, Md. Samsuzzaman, M. R. Faruque, I. Faruque, and N. Misran, Sensors, 15, No. 5: 11601 (2015); doi:10.3390/s150511601
  43. Mehmet Bakir, Muharrem Karaaslan, Furkan Dincer, Oguzhan Akgol, and Cumali Sabah, International Journal of Modern Physics B, 30, No. 20: 1650133 (2016); doi:10.1142/S0217979216501332
  44. V. F. Krapivin, C. A. Varotsos, and S. V. Marechek, Water, Air, & Soil Pollution, 229, No. 4: 110 (2018); doi:10.1007/s11270-018-3773-6
  45. Asha Srinivasan, Moutoshi Saha, Kit Caufield, Otman Abida, Ping Huang Liao, and Kwang Victor Lo, Water, Air, & Soil Pollution, 229, No. 7: 227 (2018); doi:10.1007/s11270-018-3894-y
  46. Y. I. Abdulkarim, L. Deng, M. Karaaslan, and E. Unal, Chemical Physics Letters, 732, No. 5801: 136655 (2019); doi:10.1016/j.cplett.2019.136655
  47. Kandammathe Valiyaveedu Sreekanth, Yunus Alapan, Mohamed ElKabbash, Efe Ilker, Michael Hinczewski, Umut A. Gurkan, Antonio De Luca, and Giuseppe Strangi, Nature Materials, 15, No. 6: 621 (2016); doi:10.1038/NMAT4609
  48. Jiong Wua, Peng Wanga, Xiaojun Huanga, Fang Raoa, Xiaoyu Chena, Zhaoyang Shena, and Helin Yang, Sensors and Actuators A: Physical, 280: 222 (2018); https://doi.org/10.1016/j.sna.2018.07.037
  49. Mehmet Esen, ?lhami ?lhan, Muharrem Karaaslan, and Ramazan Esen, Applied Nanoscience, 1 (2019); https://doi.org/10.1007/s13204-019-01122-1
  50. Olcay Alt?nta?, Murat Aksoy, Emin ?nal, O?uzhan Akg?l, and Muharrem Karaaslan, Measurement, 145: 678 (2019); doi:10.1016/j.measurement.2019.05.087
  51. Mehmet Bakir, Muharrem Karaaslan, Furkan Dincer, and Cumali Sabah, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 30, No. 5: 2188 (2016); doi:10.1002/jnm.2188
  52. Mehmet Bakir, ?ekip Dalga?, Muharrem Karaaslan, Faruk Karada?, O?uzhan Akgol, Emin Unal, Tolga Dep?i, and Cumali Sabah, Journal of the Electrochemical Society, 166, No. 12: 1044 (2019); doi:10.1149/2.1491912jes
  53. Mehmet Bakir, Muharrem Karaaslan, Faruk Karadag, ?ekip Dalga?, Emin ?nal, and O?uzhan Akg?l, The Applied Computational Electromagnetics Society Journal (ACES), 34, No. 5: 799 (2019); https://journals.riverpublishers.com/index.php/ACES/article/view/8499/7027
  54. O?uz Derin, Muharrem Karaaslan, Emin ?nal, Faruk Karada?, Olcay Altinta?, and O?uzhan Akg?l, Bulletin of Materials Science, 42, No. 4: 191 (2019); doi:10.1007/s12034-019-1882-5
  55. Emin ?nal, Mehmet Ba?manci, Muharrem Karaaslan, O?uzhan Akg?l, and Cumali Sabah, International Journal of Modern Physics B, 32: 18502752 (2018); doi:10.1142/S0217979218502752
  56. J. S. Bobowski, T. Johnson, and C. Eskicioglu, Progress in Electromagnetics Research Letters, 29: 139 (2012); https://doi.org/10.2528/pierl11120304
  57. Daniela P. Mesquitaa, A. Lu?s Amaral, and Eug?nio C. Ferreira, Analytica Chemica Acta, 802: 14 (2013); https://doi.org/10.1016/j.aca.2013.09.016
  58. Halime Boztoprak, Y?ksel ?zbay, D?nyamin G??l?, and Murat K???khemek, Desalination and Water Treatment, 57, No. 37: 1 (2015); doi:10.1080/19443994.2015.1085909
  59. Mehmet Bakir, ?ekip Dalga?, Emin ?nal, Faruk Karada?, Mustafa Demirci, Ahmet Sertol K?ksal, O?uzhan Akg?l, and Muharrem Karaaslan, Water Air Soil Pollut., 230: 304 (2019); https://doi.org/10.1007/s11270-019-4355-y
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement