Issues

 / 

2024

 / 

vol. 22 / 

issue 1

 



Download the full version of the article (in PDF format)

O.V. ZINCHENKO, V.D. EZHOVA, and A.L. TOLSTOV

Structure and Photochemical Characteristics of Hybrid TiO2/SiO2/Wollastonite Catalysts Prepared via Sol-Gel Approach
67–84 (2024)

PACS numbers: 61.80.Ba, 61.82.Rx, 77.84.Cg, 78.67.Rb, 81.16.Pr, 81.20.Fw, 82.50.Hp

Photoactive TiO2/SiO2 composites are fabricated via in situ sol–gel approach by deposition of as-prepared mixture of orthotitanic (TiO2•xH2O) and orthosilicic (SiO2•yH2O) acids onto a surface of micronized natural mineral CaSiO3 (wollastonite) followed by their condensation. Thermal treatment of the raw composite layer activates deep condensation of orthoacids and leads to the formation of nanostructured composite materials. Using SiO2 precursors, namely, organosilicon compounds and potassium silicate playing the role of binders and structure modifiers of Ò³Î2 phase, provides the formation of hybrid-powdered catalysts. The hybrid structure of the composite catalysts is considered by FTIR spectroscopy. The results of WAXS demonstrate an appearance of nanocrystalline Ò³Î2 anatase phase with crystalline phase content of up to 70%. Porosity measurements of the composites show a formation of nanostructured materials with well-defined microporous structure, which is characterized by surface area in the range of 60–225 m2•g–1 and micropore volume of 2–30 mm3•g–1. Evaluation of efficacy of produced composite photocatalysts in laboratory conditions under the dynamic regime and irradiation by UV-light as well as in environmental conditions in the static regime and under irradiation by direct solar light or scattered daylight demonstrate high photochemical activity in the oxidation reaction of methylene blue (MB) and nigrosine dyes. The photocatalysts are characterized by a high degradation rate (vav) of MB dye under UV-illumination that reaches 7.2 µmol•g–1•hr–1. Testing the photocatalytic coatings fabricated by spray-drying approach of powdered catalysts on inert substrate demonstrates appropriate activity as well. The degradation rate (vav) value of the coatings under direct solar-light illumination reaches 0.115 nmol•cm–2•day–1 (for MB dye) and 0.06 nmol•cm–2•day–1 (for industrial nigrosine dye). Thus, the results evidence of perspectives of practical uses of produced photocatalysts for manufacturing of cartridges for purification and decontamination of wastewater as well as for producing self-cleaning coatings for internal and external uses

KEY WORDS: Ò³Î2, wollastonite, composites, structure, properties, photocatalytic decontamination

DOI:  https://doi.org/10.15407/nnn.22.01.067

REFERENCES
  1. X. Chen and S. S. Mao, Chem. Rev., 107: 2891 (2007); https://doi.org/10.1021/cr0500535
  2. K. P. Gopinath, N. V. Madhav, A. Krishnan, R. Malolan, and G. Rangarajan, J. Environ. Manag., 270: 110906 (2020); https://doi.org/10.1016/j.jenvman.2020.110906
  3. O. L. Stroyuk and S. Ya. Kuchmy, Theoret. Experim. Chem., 56, No. 3: 143 (2020); https://doi.org/10.1007/s11237-020-09648-0
  4. C. Liu, Y. Li, and Q. Duan, Appl. Surf. Sci., 503: 144111 (2020); https://doi.org/10.1016/j.apsusc.2019.144111
  5. N. I. Romanovska, P. A. Manoryk, N. I. Ermokhina, P. S. Yaremov, and V. M. Grebennikov, Theoret. Experim. Chem., 55, No. 5: 345 (2019); https://doi.org/10.1007/s11237-019-09627-0
  6. V. F. Matyushov, A. L. Tolstov, P. S. Yaremov, and V. G. Ilyin, Theoret. Expim. Chem., 49, No. 5: 333 (2013); https://doi.org/10.1007/s11237-013-9334-6
  7. M. Zhang, E. Lei, R. Zhang, and Z. Liu, Surface Interfaces, 16: 194 (2019); https://doi.org/10.1016/j.surfin.2018.10.005
  8. K. Guan, Surface Coat Technol., 191: 155 (2005); https://doi.org/10.1016/j.surfcoat.2004.02.022
  9. K. Balachandaran, Int. J. Eng. Sci. Technol., 2, No. 8: 3695 (2010); http://www.ijest.info/docs/IJEST10-02-08-66.pdf
  10. Z. Bielan, A. Sulowska, S. Dudziak, K. Siuzdak, J. Ryl, and A. Zielinska-Jurek, Catalysts, 10: 672 (2020); https://doi.org/10.3390/catal10060672
  11. S. Varnagiris, M. Urbonavicius, S. Sakalauskaite, R. Daugelavicius, and D. Milcius, Sci. Total Environ., 720: 137600 (2020); https://doi.org/10.1016/j.scitotenv.2020.137600
  12. E. Loccufier, K. Deventer, D. Manhaeghe, S. W. H. Van Hulle, and K. De Clerck, Chem. Eng. J., 387: 124143 (2020); https://doi.org/10.1016/j.cej.2020.124143
  13. Q. Li and F.-T. Li, Adv. Colloid Interface Sci., 284: 102275 (2020); https://doi.org/10.1016/j.cis.2020.102275
  14. E. I. Cedillo-Gonz?lez, J. M. Hern?ndez-L?pez, J. J. Ruiz-Vald?s, V. Barbieri, and C. Siligardi, Construct. Build. Mater., 237: 117692 (2020); https://doi.org/10.1016/j.conbuildmat.2019.117692
  15. A. Matsuda, T. Matoda, and T. Kogure, Chem. Mater., 17: 749 (2005); https://doi.org/10.1021/cm048135h
  16. N. Negishi, M. Sugasawa, Y. Miyazaki, Y. Hirami, and S. Koura, Water Res, 150: 40 (2019); https://doi.org/10.1016/j.watres.2018.11.047
  17. E. P. Ferreira-Neto, M. A. Worsley, and U. P. Rodrigues-Filho, J. Environ. Chem. Eng., 7, No. 5: 103425 (2019); https://doi.org/10.1016/j.jece.2019.103425
  18. G. J. Rinc?n and E. J. La Motta, Heliyon, 5, No. 6: e01966 (2019); https://doi.org/10.1016/j.heliyon.2019.e01966
  19. D. Wang, P. Hou, D. Stephan, S. Huang, and X. Cheng, Construct. Build Mater., 241: 118124 (2020); https://doi.org/10.1016/j.conbuildmat.2020.118124
  20. I. Fatimah, N. I. Prakoso, I. Sahroni, M. M. Musawwa, and O. Muraza, Heliyon, 5, No. 11: e02766 (2019); https://doi.org/10.1016/j.heliyon.2019.e02766
  21. A. S. Yusuff, I. I. Olateju, and O. A. Adesina, Materialia, 8: 100484 (2019); https://doi.org/10.1016/j.mtla.2019.100484
  22. V. Wongso, C. J. Chen, A. Razzaq, N. A. Kamal, and N. S. Sambudi, Appl. Clay Sci., 180: 105158 (2019); https://doi.org/10.1016/j.clay.2019.105158
  23. H. Xie, N. Li, B. Liu, J. Yang, and X. Zhao, J. Phys. Chem. C, 120, No. 19: 10390 (2016); https://doi.org/10.1021/acs.jpcc.6b01730
  24. M. E. Kurtoglu, T. Longenbach, and Yu. Gogotsi, Int. J. Appl. Glass Sci., 2, No. 2: 108 (2011); https://doi.org/10.1111/j.2041-1294.2011.00040.x
  25. S. Sanna, W. G. Schmidt, and P. Thissen, J. Phys. Chem. C, 118: 8007 (2014); https://doi.org/10.1021/jp500170t
  26. C. Paluszkiewicz, M. Blazewicz, J. Podporska, and T. Gumu?a, Vibrat. Spectr., 48: 263 (2008); https://doi.org/10.1016/j.vibspec.2008.02.020
  27. A. M. Hofmeister and J. E. Bowey, Mon. Not. R. Astron. Soc., 367: 577 (2006); https://doi.org/10.1111/j.1365-2966.2006.09894.x
  28. V. A. Zeitler and C. A. Brown, J. Phys. Chem., 61, No. 9: 1174 (1957); https://doi.org/10.1021/ac60132a615
  29. A. Burneau, O. Barres, J. P. Gallas, and J. C. Lavalley, Langmuir, 6, No. 8: 1364 (1990); https://doi.org/10.1021/la00098a008
  30. B. Brem, E. Gal, L. G?in?, L. Silaghi-Dumitrescu, E. Fischer-Fodor, C. I. Tomuleasa, A. Grozav, V. Zaharia, L. Filip, and C. Cristea, Int. J. Mol. Sci., 18: 1365 (2017); https://doi.org/10.3390/ijms18071365
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement