Download the full
version of the article (in PDF format)
K.O. KUDELKO, O.H. DZIAZ'KO, L.M. ROZHDESTVENS'KA, L.B. KHAR'KOVA,
and V.M. OGENKO
Formation of Nanopores in Anodic Oxidized
Aluminium under the Influence of Carbon Nanoparticles
53–65 (2024)
PACS numbers: 61.43.Gt, 78.30.Na, 78.40.Ri, 81.05.Je, 81.05.Rm, 82.47.Wx, 82.80.Gk
The conditions and characteristics for nanoporous anodic oxidized aluminium (AOA) are
presented. The anodizing process is carried out in a solution of oxalic acid containing carbon nanoparticles
(CNPs). The carbon nanoparticles are studied by ultraviolet–visible spectroscopy, dynamic laser scattering
(in the aggregated state), Raman spectroscopy, and infrared spectroscopy. Scanning electron microscopes are
used to study the morphology of the AOA. The pore size of the porous layer is of 20–40 nm, and the pore-wall
thickness is up to 50 nm. In the absence of the addition of carbon material, similar surface parameters are
of 50–100 nm and 30 nm, respectively. The effect of the carbon material on the structuring of the pore layer
is explained in terms of adsorption of it on the AOA during anodizing process. A high-disordered structure
of carbon nanoparticles is revealed. The adsorption isotherm is obtained, and it is found that the Temkin
model is the most suitable for describing the sorption equilibrium. The crystallization of AOA under
hydrothermal conditions at 200C is proposed. The addition of CNDs to the oxalic acid electrolyte reduces
the pore size of obtained anodized aluminium. Carbon nanoparticles effect on the formation of the porous
structure of AOA with adsorption. The advantage of CNDs over GO is the fabrication of AOA with smaller pores
in mild conditions without aggressive reagents. The effect of CNDs on the porous structure of AOA can be
explained, on the one hand, by its shielding by carbon nanoparticles, and on the other hand, by the "damping
effect" of CNDs on the faster thermal expansion of aluminium compared to Al2O3. It is possible to obtain
samples of AOA with nanoscale pores by environmentally friendly synthesis using cheap and readily available
chemicals. To obtain crystalline Al2O3, hydrothermal treatment can be implemented that has the advantage of
a lower crystallization temperature over calcination.
KEY WORDS: anodic oxidized aluminium, carbon nanoparticles, nanopores, adsorption, anodizing mechanism
DOI: https://doi.org/10.15407/nnn.22.01.053
REFERENCES
- K. A. Evans, Properties and Uses of Aluminium Oxides and Aluminium Hydroxides (Ed. A. J. Downs) (London–New York: Pergamon Press: 1993), p. 993.
- H. K. Hami, R. F. Abbas, E. M. Eltayef, and N. I. Mahdi, Samarra J. Pure Appl. Sci., 2: 19 (2020); https://doi.org/10.54153/sjpas.2020.v2i2.109
- M. Pica, Molecules, 26: 2392 (2021); https://doi.org/10.3390/molecules26082392
- Y. S. Dzyazko, L. M. Rozhdestvenska, and A. V. Palchik, Sep. Pur. Techn., 45: 141 (2005).
- A. V. Pal’chik, Yu. S. Dzyaz’ko, and L. M. Rozhdestvenskaya, Russ. J. Appl. Chem., 75: 414 (2005).
- T. V. Maltseva, E. O. Kudelko, and V. N. Belyakov, Russ. J. Phys. Chem. A, 83: 2336 (2009).
- T. V. Mal’tseva, T. V. Yatsenko, E. O. Kudelko, and V. N. Belyakov, Russ J. Appl. Chem., 84: 756 (2011).
- T. V. Mal’tseva, A. V. Pal’chik, E. O. Kudelko, S. L. Vasilyuk, and K. A. Kazdobin, J. Water Chem. Techn., 37: 18 (2015); https://doi.org/10.3103/S1063455X15010051
- X.-M. Wang, X.-Y. Li, and K. Shih, J. Membr. Sci., 368: 134 (2011); https://doi.org/10.1016/j.memsci.2010.11.038
- T. A. Saleh and V. K. Gupta, Sep. Purif. Tech., 89: 245 (2012); doi:10.1016/j.seppur.2012.01.039
- M. Branchi, M. Sgambetterra, I. Pettiti, S. Panero, and M. A. Navarra, Inter. J. Hydr. Ener., 40: 14757 (2015); doi:10.1016/j.ijhydene.2015.07.030
- V. Myronchuk, Yu. Zmievskii, Yu. Dzyazko, L. Rozhdestvenska, and V. Zakharov, Acta Periodica Techn., 49: 103 (2018); https://doi.org/10.2298/APT1849103M
- Yuliya Dzyazko, Liudmyla Rozhdestveskaya, Yurii Zmievskii, Yurii Volfkovich, Valentin Sosenkin, Nadejda Nikolskaya, Sergey Vasilyuk, Valerii Myronchuk, and Vladimir Belyakov, Mater. Today: Proceed., 2: 3864 (2015); doi:10.1016/j.matpr.2015.08.003
- V. G. Myronchuk, Y. S. Dzyazko, Yu. G. Zmievskii, A. I. Ukrainets, A. V. Bildukevich, L. V. Kornienko, L. M. Rozhdestvenskaya, and A. V. Palchik, Acta Periodica Techn., 47: 153 (2016); https://doi.org/10.2298/APT1647153M
- Y. S. Dzyazko, L. M. Rozhdestvenska, S. L. Vasilyuk, K. O. Kudelko, and V. N. Belyakov, Nanoscale Res. Let., 12: 1 (2017); doi:10.1186/s11671-017-2208-4
- S. Szabolcs, V. Feh?r, D. Kurhan, A. N?meth, M. Sysyn, and S. Fischer, Infrastructures, 8: 1 (2023); https://doi.org/10.3390/infrastructures8020027
- L. Rozhdestvenska, K. Kudelko, V. Ogenko, and M. Chang, Ukr. Chem. J., 86: 67 (2021); https://doi.org/10.33609/2708-129X.86.12.2020.67-102
- R. Kavian, A. Vicenzo, and M. Bestetti, J. Mater. Sci., 46: 1487 (2011); doi:10.1007/s10853-010-4950-1
- L. Zaraska, E. Kurowska, G. D. Sulka, I. Senyk, and M. Jaskula, J. Solid State Electrochem., 18: 36 (2014); https://doi.org/10.1007/s10008-013-2215-z
- G. Yongji, X. Mingyang, and Z. Jinlong, Appl. Surf Sci., 319: 8 (2014); doi:10.1016/j.apsusc.2014.04.182
- K. Kudelko, L. Rozhdestvenskaya, V. Ogenko, and V. Chmilenko, Appl. Nanosci., 12: 1967 (2022); https://doi.org/10.1007/s13204-022-02457-y
- V. Ogenko, S. Orysyk, L. Kharkova, O. Yanko, and D. Chen, Ukr. Chem. J., 87: 3 (2021); https://doi.org/10.33609/2708-129X.87.09.2021.3-13
- A. Perrotta, Mat. Res. Innovat., 2: 33 (1998); https://doi.org/10.1007/s100190050058
- J. Schneider, C. J. Reckmeier, Y. Xiong, M. von Seckendorff, A. S. Susha, P. Kas?k, and A. L. Rogac, J. Phys. Chem. C, 121: 2014 (2017); doi:10.1021/ACS.JPCC.6B12519
- Kazuo Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (USA: John Wiley & Sons, Inc., Publication: 1997); https://download.e-bookshelf.de/download/0000/5722/69/L-G-0000572269-0002357953.pdf
- I. Childres, L. A. Jauregui, W. Park, H. Cao, and Y. P. Chen, Raman Spectroscopy of Graphene and Related Materials. In: New Developments in Photon and Materials Research (Ed. J. I. Jang) (Nova Science: 2013), pp. 1–20.
.
|