Download the full
version of the article (in PDF format)
V.V. TYTARENKO, V.A. ZABLUDOVSKY, and I.V. TYTARENKO
Laser-Assisted Electrodeposition of Composite
Carbon-Containing Nickel Coatings
41–52 (2024)
PACS numbers: 62.23.Pq, 68.37.Hk, 68.55.J-, 81.05.uj, 81.15.Pq, 81.16.Mk, 81.65.Kn
The paper presents the study of the structure, protective and mechanical properties of
nickel composite coatings modified with ultradispersed diamonds and electrodeposited under conditions of
external stimulation by laser radiation. An analysis of the cathodic polarization curves shows that the
presence of dispersed particles with a concentration of 2-15 g/l in the aqueous electrolyte solution leads
to a shift in the cathodic potential to the electronegative region by 108-340 mV, respectively, that
indicates an increase in charge-transfer resistance. Nickel composite coatings obtained by laser-assisted
electrodeposition are characterized by a higher content of ultradispersed diamond particles in the coating
(4.35-5.10 wt.%) as compared to the mode of deposition without laser irradiation (2.24-3.15 wt.%). In this
case, the proportion of particles of smaller size (~0.25-1 µm) increases in the coatings. The more intense
penetration of dispersed-phase particles into the emerging coating during the laser stimulation of the
electrodeposition process is due to the presence of a temperature gradient, which provides an additional
supply of metal ions in the irradiation region. Increased concentration of the dispersed phase in nickel
composite coatings promotes formation of a finer crystalline coating structure, enhanced hardness, corrosion
resistance, and wear resistance of the coatings.
KEY WORDS: ultradispersed diamond particles, composite nickel coatings,
laser-assisted electrodeposition, structure, mechanical and protective properties
DOI: https://doi.org/10.15407/nnn.22.01.041
REFERENCES
- G. K. Burkat and V. Yu. Dolmatov, J. Phys. Chem. Solids, 46, No. 4: 685 (2004) (in Russian); https://journals.ioffe.ru/articles/viewPDF/4203
- G. K. Burkat, V. Yu. Dolmatov, E. Osawa, and E. A. Orlova, J. Superhard Mater., 2: 43 (2010) (in Russian); http://dspace.nbuv.gov.ua/bitstream/handle/123456789/63448/03-Burkat.pdf?sequence=1
- V. Yu. Dolmatov, Russ. Chem. Rev., 70: 607 (2001) (in Russian); https://doi.org/10.1070/RC2001v070n07ABEH000665
- V. Yu. Dolmatov, Russ. Chem. Rev., 77, No. 3: 303 (2008) (in Russian); https://doi.org/10.1070/RC2008v077n03ABEH003872
- Xiangzhu He, Yongxiu Wang, Xin Sun, and Liyong Huang, Nanosci. Nanotechnol. Lett., 4, No. 1: 48 (2012) https://doi.org/10.1166/nnl.2012.1286
- G. A. Chiganova and L. E. Mordvinova, Inorganic Materials, 47, No. 7: 717 (2011); https://doi.org/10.1134/S0020168511070089
- Hiroshi Matsubara, Mikinori Kobayashi, Hiroshi Nishiyama, Nobuo Saito, Yasunobu Inoue, and Masao Mayuzumi, Electrochemistry, 72, No. 6: 446 (2004); https://doi.org/10.5796/electrochemistry.72.446
- Liping Wang, Yan Gao, Qunji Xue, Huiwen Liu, and Tao Xu, Mater. Sci. Eng. A, 390, Nos. 1–2: 313 (2005); https://doi.org/10.1016/j.msea.2004.08.033
- Xiangzhu He, Yongxiu Wang, Xin Sun, and Liyong Huang, Nanosci. Nanotechnol. Lett., 4, No. 1: 48 (2012); https://doi.org/10.1166/nnl.2012.1286
- G. K. Burkat, T. Fujimura, V. Yu. Dolmatov, E. A. Orlova, and M. V. Veretennikova, Diamond Relat. Mater., 14, No. 8: 1761 (2005); https://doi.org/10.1016/j.diamond.2005.08.004
- R. Winston Revie, Uhlig’s Corrosion Handbook (Wiley: 2011); https://www.wiley.com/en-us/9780470080320
- V. V. Tytarenko, E. Ph. Shtapenko, E. Î. Voronkov, V. A. Zabludovsky, W. Kolodziejczyk, K. Kapusta, and V. N. Kuznetsov, Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 15, No. 4: 866 (2021); doi:10.1134/S102745102104039X
- V. V. Tytarenko, E. Ph. Shtapenko, E. O. Voronkov, Aruna Vangara, V. A. Zabludovsky, Wojciech Kolodziejczyk, K. Kapusta, and S. I. Okovytyy, J. Chem. Technol., 29, No. 1: 42 (2021); https://doi.org/10.15421/082108
- V. A. Zabludovsky, V. V. Tytarenko, and E. Ph. Shtapenko, Transactions of the IMF, 95, No. 6: 337 (2017); https://doi.org/10.1080/00202967.2017.1355463
- V. A. Zabludovsky, V. V. Dudkina, and E. F. Shtapenko, Lazerno-Stimulirovannoye Elektroosazhdenie Metallov [Laser-Stimulated Metal Electrodeposition] (Saarbr?cken: Lambert Academic Publishing: 2014) (in Russian); https://eadnurt.diit.edu.ua/uk/bitstream/123456789/11210/1/Zabludovsky.pdf
- Yilin Yao, Jinqiu Zhang, Peixia Yang, and A. N. Maozhong, Mater. Reports, 36, No. 3: 20080209-9 (2022); https://doi.org/10.11896/cldb.20080209
- Xueren Dai, Kun Xu, Zhaoyang Zhang, Lingyue Zhang, Yucheng Wu, Hao Zhu, and Shuai Yang, J. Electroanal. Chem., 904, No. 1: 115855 (2021); doi:10.1016/j.jelechem.2021.115855
- Wenrong Shen, Kun Xu, Zhaoyang Zhang, Sheng Guo, Shuai Yang, Hao Zhu, Sishui Liu, and Yucheng Wu, J. Electrochem. Soc., 169, No. 8: 082507 (2022); doi:10.1149/1945-7111/ac8646
- V. A. Zabludovsky, V. V. Dudkina, and E. Ph. Shtapenko, Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport Named after Academician V. Lazaryan, 47, No. 5: 70 (2013) (in Ukrainian); doi:10.15802/stp2013/17968
- V. V. Tytarenko, V. A. Zabludovsky, E. Ph. Shtapenko, and I. V. Tytarenko, Galvanotechnik, 4: 648 (2019); http://eadnurt.diit.edu.ua/bitstream/123456789/11211/1/Tytarenko.pdf
- A. V. Kovalenko and M. A. Urtenov, Krayevyye Zadachi dlya Sistemy Uravneniy Ehlektrodiffuzii. Odnomernyye Zadachi [Boundary Value Problems for a Set of Electrodiffusion Equations. One-Dimensional Problems] (Saarbr?cken: Lambert Academic Publishing: 2011), part 1 (in Russian).
- V. V. Tytarenko, V. A. Zabludovsky, E. Ph. Shtapenko, and I. V. Tytarenko, Phys. Chem. Solid State, 23, No. 3: 461 (2022); doi:10.15330/pcss.23.3.461-467
.
|