Issues

 / 

2024

 / 

vol. 22 / 

issue 1

 



Download the full version of the article (in PDF format)

E.I. GET'MAN, O.YU. MARIICHAK, L.I. ARDANOVA, and S.V. RADIO

Predicting the Thermodynamic Stability of (Gd1-xLnx)2SiO5 and
(Lu1-xLnx)2SiO5 Solid Solutions of the P21/c Space Group

13–30 (2024)

PACS numbers: 61.66.Fn, 64.75.Nx, 65.40.Ba, 81.30.Dz, 81.40.Cd, 82.33.Pt, 82.60.Lf

Within the framework of V. S. Urusov’s crystal-energy theory of isomorphous substitutions, the mixing energies (interaction parameters) and critical decomposition (stability) temperatures are calculated for the (Gd1-xLnx)2SiO5 systems, where Ln represents rare-earth elements (REEs) or yttrium. The values of the total mixing energies are determined mainly by contributions arising from the difference in sizes of the substituting structural units. The contributions due to differences in the degree of ionicity of the chemical bond between the components are significantly smaller and can be neglected in most cases. Diagrams of the thermodynamic stability of systems (Gd1?xLnx)2SiO5 and decomposition domes of the (Gd1-xLnx)2SiO5 and (Lu1-xLnx)2SiO5 systems are presented, which allow for graphical prediction of decomposition temperatures of solid solutions within the specified substitution limits, equilibrium substitution limits at a given temperature, and ranges of thermodynamic stability for solid solutions. The predictions of thermodynamic stability are consistent with experimental data previously reported in the literature for solid solutions based on doped gadolinium oxyorthosilicate. The gadolinium oxyorthosilicate solid solutions, which exhibit luminescent, scintillation, and other practically important properties, due to their very low critical decomposition temperatures and a wide temperature range of thermodynamic stability compared to solid solutions of oxyorthosilicate of other REEs, can find practical applications as nanomaterials

KEY WORDS: solid solution, mixing energy, isomorphous substitutions, complex oxide systems, oxyorthosilicate, rare-earth elements, gadolinium, yttrium

DOI:  https://doi.org/10.15407/nnn.22.01.013

REFERENCES
  1. O. Ts. Sidletsky and B. V. Grynyov, Stsyntylyatsiyni Krystaly na Osnovi Tverdykh Rozchyniv Zamishchennya [Scintillation Crystals Based on Solid Substitutional Solutions] (Kharkiv: ISMA: 2019) (in Ukrainian); http://functmaterials.org.ua/contents/book/Book_Sidletskiy.pdf
  2. S. Shimizu, K. Kurashige, T. Usui, N. Shimura, K. Sumiya, N. Senguttuvan, A. Gunji, M. Kamada, and H. Ishibashi, IEEE Transactions on Nuclear Science, 53, No. 1: 14 (2006); doi:10.1109/TNS.2005.862975
  3. V. Jar?, E. Mihokova, J. A. Mare?, A. Beitlerova, D. Kurtsev, O. Sidletskiy, and M. Nikl, J. Phys. D: Appl. Phys., 47, No. 34: 365304 (2014); doi:10.1088/0022-3727/47/36/365304
  4. T. Usui, S. Shimizu, N. Shimura, K. Kurashige, Y. Kurata, K. Sumiya, N. Senguttuvan, A. Gunji, M. Kamada, and H. Ishibashi, IEEE Transactions on Nuclear Science, 54, No. 1: 19 (2007); doi:10.1109/TNS.2006.886373
  5. A. I. Slesarev, V. Ju. Ivanov, A. V. Ishchenko, A. N. Cherepanov, B. V. Shulgin, A. V. Chepkasova, and M. Kobajashi, Working Substance for Thermo-Exoelectronic Dosimetry (Patent RU 2331086 C1, IPC G01T 1/20, G01T 3/06 (2006.01). Application: 2007113282/28, 09.04.2007. Date of publication: 10.08.2008 Bull. 22); http://hdl.handle.net/10995/68666
  6. P. Thiyagarajan, B. Tiwari, M. Kottaisamy, N. Rama, and M. S. Ramachandra Rao, Appl. Phys. A, 94, No. 3: 607 (2009); https://doi.org/10.1007/s00339-008-4861-z
  7. Q. Wu, X. Jing, and H. Jiao, Opt. Mater., 31, No. 8: 1123 (2009); https://doi.org/10.1016/j.optmat.2008.12.004
  8. L. H. Zheng, R. Lisiecki, Q. G. Wang, X. D. Xu, L. B. Su, W. Ryba-Romanowski, and J. Xu, Lasers, Sources, and Related Photonic Devices (OSA–Technical Digest (CD): Optica Publishing Group: 2012); https://doi.org/10.1364/AIOM.2012.IW3D.4
  9. M. Jie, G. Zhao, X. Zeng, L. Su, H. Pang, X. He, and J. Xu, J. Cryst. Growth, 277, Nos. 1–4: 175 (2005); https://doi.org/10.1016/j.jcrysgro.2004.12.160
  10. D. Kurtsev, O. Sidletskiy, S. Neicheva, V. Bondar, O. Zelenskaya, V. Tarasov, M. Biatov, and A. Gektin, Mater. Res. Bull., 52: 25 (2014); https://doi.org/10.1016/j.materresbull.2014.01.006
  11. V. V. Shinde, A. Tiwari, and S. J. Dhoble, J. Mol. Struct., 1217: 128397 (2020); https://doi.org/10.1016/j.molstruc.2020.128397
  12. Yu. Zorenko, V. Gorbenko, V. Savchyn, T. Voznyak, B. Grinyov, O. Sidletskiy, D. Kurtsev, A. Fedorov, V. Baumer, M. Nikl, J. A. Mares, A. Beitlerova, P. Prusa, and M. Kucera, J. Cryst. Growth, 337, No. 1: 72 (2011); https://doi.org/10.1016/j.jcrysgro.2011.10.003
  13. S. N. Ogugua, S. K. K. Shaat, H. C. Swart, and O. M. Ntwaeaborwa, J. Phys. Chem. Solids, 83: 109 (2015); https://doi.org/10.1016/j.jpcs.2015.04.002
  14. S. N. Ogugua, S. K. K. Shaat, H. C. Swart, and O. M. Ntwaeaborwa, J. Lumin., 179: 154 (2016); https://doi.org/10.1016/j.jlumin.2016.06.056
  15. M. Gao, P. Zhang, L. Luo, R. Guo, and Yu. Wang, Optik, 225: 165814 (2021); https://doi.org/10.1016/j.ijleo.2020.165814
  16. S. N. Ogugua, H. C. Swart, and O. M. Ntwaeaborwa, Physica B, 535: 143 (2018); https://doi.org/10.1016/j.physb.2017.07.006
  17. Ch. A. Rao and K. V. R. Murthy, Int. J. Sci. Res. (IJSR), 10, No. 1: 516 (2021); doi:10.21275/SR21110114938
  18. H. Feng, J. Chen, Zh. Zhang, Y. Wang, Zh. Xu, J. Zhao, and R. Mao, Radiat. Meas., 109: 8 (2018); https://doi.org/10.1016/j.radmeas.2017.12.001
  19. V. S. Urusov, Teoriya Izomorfnoi Smesimosti [The Theory of Isomorphous Miscibility] (Ìoskva: Nauka: 1977) (in Russian).
  20. V. S. Urusov, Fortschr. Mineral., 52: 141 (1975).
  21. V. S. Urusov, V. L. Tauson, and V. V. Akimov, Geokhimiya Tverdogo Tela [Geochemistry of Solid State] (Moskva: GEOS: 1997) (in Russian).
  22. D. Spassky, A. Vasil’ev, V. Nagirnyi, I. Kudryavtseva, D. Deyneko, I. Nikiforov, I. Kondratyev, and B. Zadneprovski, Materials, 15, No. 19: 6844 (2022); https://doi.org/10.3390/ma15196844
  23. V. S. Voznyak-Levushkina, A. A. Arapova, D. A. Spassky, I. V. Nikiforov, and B. I. Zadneprovski, Phys. Solid State, 64, No. 11: 567 (2022); https://doi.org/10.1134/S1063783422110130
  24. E. I. Get’man, S. V. Radio, and L. I. Ardanova, Inorg. Mater., 54, No. 6: 596 (2018); https://doi.org/10.1134/S0020168518060031
  25. R. D. Shannon, Acta Crystallogr., Sect. A, 32, No. 5: 751 (1976); https://doi.org/10.1107/S0567739476001551
  26. K. Li, and D. Xue, J. Phys. Chem. A, 110, No. 39: 11332 (2006); https://doi.org/10.1021/jp062886k
  27. J. Felsche, The Crystal Chemistry of the Rare-Earth Silicates. In: Rare Earths. Structure and Bonding (Berlin–Heidelberg: Springer: 1973), vol. 13; https://doi.org/10.1007/3-540-06125-8_3
  28. R. Becker, Z. Metallkd., 29: 245 (1937) (in German).
  29. J. Wang, Sh. Tian, G. Li, F. Liao, and X. Jing, Mater. Res. Bull., 36, No. 10: 1855 (2001); https://doi.org/10.1016/S0025-5408(01)00664-X
  30. E. G. Yukihara, L. G. Jacobsohn, M. W. Blair, B. L. Bennett, S. C. Tornga, R. E. Muenchausen, J. Lumin., 130, No. 12: 2309 (2010); https://doi.org/10.1016/j.jlumin.2010.07.010
  31. R. E. Muenchausen, E. A. McKigney, L. G. Jacobsohn, M. W. Blair, B. L. Bennett, and D. W. Cooke, IEEE Transactions on Nuclear Science, 55, No. 3: 1532 (2008); doi:10.1109/TNS.2008.922844
  32. E. I. Get’man, Yu. A. Oleksii, S. V. Radio, and L. I. Ardanova, Tonkie Khimicheskie Tekhnologii [Fine Chemical Technologies], 15, No. 5: 54 (2020); https://doi.org/10.32362/2410-6593-2020-15-5-54-62
  33. S. S. Batsanov, Strukturnaya Khimiya. Fakty i Zavisimosti [Structural Chemistry. Facts and Dependences] (Ìoskva: Dialog-MGU: 2000) (in Russian).
  34. S. S. Batsanov, Russ. Chem. Rev., 37, No. 5: 332 (1968); https://doi.org/10.1070/RC1968v037n05ABEH001639
  35. R. Hoppe, Adv. Fluor. Chem., 6: 387 (1970).
  36. B. Grynyov, V. Ryzhikov, J. K. Kim, and M. Jae, Scintillator Crystals, Radiation Detectors & Instruments on Their Base (Kharkiv: 2004); http://functmaterials.org.ua/contents/book/Ryzhikov-2004.pdf
  37. E. I. Get’man and S. V. Radio, Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications. Springer Proceedings in Physics (Eds. O. Fesenko and L. Yatsenko) (Springer: Cham.: 2021), vol. 246; https://doi.org/10.1007/978-3-030-51905-6_39
  38. S. N. Ogugua, R. L. Nyenge, P. T. Sechogela, H. C. Swart, and O. M. Ntwaeaborwa, J. Vac. Sci. Technol. A, 34, No. 19: 021520 (2016); https://doi.org/10.1116/1.4942502
  39. S. N. Ogugua, S. K. K. Shaat, H. C. Swart, R. E. Kroon, and O. M. Ntwaeaborwa, J. Alloys Compd., 775: 950 (2019); https://doi.org/10.1016/j.jallcom.2018.10.090
  40. V. Y. Ivanov, V. A. Pustovarov, M. Kirm, E. S. Shlygin, and K. I. Shirinskii, Phys. Solid State, 47, No. 8: 1492 (2005); https://doi.org/10.1134/1.2014499
  41. K. Shakampally, P. M. Rao, and K. V. R. Murthy, International Journal for Research in Applied Science & Engineering Technology (IJRASET), 5, No. XI: 1735 (2017).
  42. T. Utsu and S. Akiyama, J. Cryst. Growth, 109, Nos. 1–4: 385 (1991); https://doi.org/10.1016/0022-0248(91)90207-LZ
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2024 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement