Download the full
version of the article (in PDF format)
E.I. GET'MAN, O.YU. MARIICHAK, L.I. ARDANOVA, and
S.V. RADIO
Predicting the Thermodynamic
Stability of (Gd1-xLnx)2SiO5
and (Lu1-xLnx)2SiO5 Solid Solutions of the
P21/c Space Group
13–30 (2024)
PACS numbers: 61.66.Fn, 64.75.Nx, 65.40.Ba, 81.30.Dz, 81.40.Cd, 82.33.Pt, 82.60.Lf
Within the framework of V. S. Urusov’s crystal-energy theory of isomorphous substitutions,
the mixing energies (interaction parameters) and critical decomposition (stability) temperatures are
calculated for the (Gd1-xLnx)2SiO5 systems, where Ln represents rare-earth elements (REEs) or yttrium. The
values of the total mixing energies are determined mainly by contributions arising from the difference in
sizes of the substituting structural units. The contributions due to differences in the degree of ionicity
of the chemical bond between the components are significantly smaller and can be neglected in most cases.
Diagrams of the thermodynamic stability of systems (Gd1?xLnx)2SiO5 and decomposition domes of the
(Gd1-xLnx)2SiO5 and (Lu1-xLnx)2SiO5 systems are presented, which allow for graphical prediction of
decomposition temperatures of solid solutions within the specified substitution limits, equilibrium
substitution limits at a given temperature, and ranges of thermodynamic stability for solid solutions. The
predictions of thermodynamic stability are consistent with experimental data previously reported in the
literature for solid solutions based on doped gadolinium oxyorthosilicate. The gadolinium oxyorthosilicate
solid solutions, which exhibit luminescent, scintillation, and other practically important properties, due
to their very low critical decomposition temperatures and a wide temperature range of thermodynamic
stability compared to solid solutions of oxyorthosilicate of other REEs, can find practical applications as
nanomaterials
KEY WORDS: solid solution, mixing energy, isomorphous substitutions, complex oxide systems, oxyorthosilicate, rare-earth elements, gadolinium, yttrium
DOI: https://doi.org/10.15407/nnn.22.01.013
REFERENCES
- O. Ts. Sidletsky and B. V. Grynyov, Stsyntylyatsiyni Krystaly na Osnovi Tverdykh Rozchyniv Zamishchennya [Scintillation Crystals Based on Solid Substitutional Solutions] (Kharkiv: ISMA: 2019) (in Ukrainian); http://functmaterials.org.ua/contents/book/Book_Sidletskiy.pdf
- S. Shimizu, K. Kurashige, T. Usui, N. Shimura, K. Sumiya, N. Senguttuvan, A. Gunji, M. Kamada, and H. Ishibashi, IEEE Transactions on Nuclear Science, 53, No. 1: 14 (2006); doi:10.1109/TNS.2005.862975
- V. Jar?, E. Mihokova, J. A. Mare?, A. Beitlerova, D. Kurtsev, O. Sidletskiy, and M. Nikl, J. Phys. D: Appl. Phys., 47, No. 34: 365304 (2014); doi:10.1088/0022-3727/47/36/365304
- T. Usui, S. Shimizu, N. Shimura, K. Kurashige, Y. Kurata, K. Sumiya, N. Senguttuvan, A. Gunji, M. Kamada, and H. Ishibashi, IEEE Transactions on Nuclear Science, 54, No. 1: 19 (2007); doi:10.1109/TNS.2006.886373
- A. I. Slesarev, V. Ju. Ivanov, A. V. Ishchenko, A. N. Cherepanov, B. V. Shulgin, A. V. Chepkasova, and M. Kobajashi, Working Substance for Thermo-Exoelectronic Dosimetry (Patent RU 2331086 C1, IPC G01T 1/20, G01T 3/06 (2006.01). Application: 2007113282/28, 09.04.2007. Date of publication: 10.08.2008 Bull. 22); http://hdl.handle.net/10995/68666
- P. Thiyagarajan, B. Tiwari, M. Kottaisamy, N. Rama, and M. S. Ramachandra Rao, Appl. Phys. A, 94, No. 3: 607 (2009); https://doi.org/10.1007/s00339-008-4861-z
- Q. Wu, X. Jing, and H. Jiao, Opt. Mater., 31, No. 8: 1123 (2009); https://doi.org/10.1016/j.optmat.2008.12.004
- L. H. Zheng, R. Lisiecki, Q. G. Wang, X. D. Xu, L. B. Su, W. Ryba-Romanowski, and J. Xu, Lasers, Sources, and Related Photonic Devices (OSA–Technical Digest (CD): Optica Publishing Group: 2012); https://doi.org/10.1364/AIOM.2012.IW3D.4
- M. Jie, G. Zhao, X. Zeng, L. Su, H. Pang, X. He, and J. Xu, J. Cryst. Growth, 277, Nos. 1–4: 175 (2005); https://doi.org/10.1016/j.jcrysgro.2004.12.160
- D. Kurtsev, O. Sidletskiy, S. Neicheva, V. Bondar, O. Zelenskaya, V. Tarasov, M. Biatov, and A. Gektin, Mater. Res. Bull., 52: 25 (2014); https://doi.org/10.1016/j.materresbull.2014.01.006
- V. V. Shinde, A. Tiwari, and S. J. Dhoble, J. Mol. Struct., 1217: 128397 (2020); https://doi.org/10.1016/j.molstruc.2020.128397
- Yu. Zorenko, V. Gorbenko, V. Savchyn, T. Voznyak, B. Grinyov, O. Sidletskiy, D. Kurtsev, A. Fedorov, V. Baumer, M. Nikl, J. A. Mares, A. Beitlerova, P. Prusa, and M. Kucera, J. Cryst. Growth, 337, No. 1: 72 (2011); https://doi.org/10.1016/j.jcrysgro.2011.10.003
- S. N. Ogugua, S. K. K. Shaat, H. C. Swart, and O. M. Ntwaeaborwa, J. Phys. Chem. Solids, 83: 109 (2015); https://doi.org/10.1016/j.jpcs.2015.04.002
- S. N. Ogugua, S. K. K. Shaat, H. C. Swart, and O. M. Ntwaeaborwa, J. Lumin., 179: 154 (2016); https://doi.org/10.1016/j.jlumin.2016.06.056
- M. Gao, P. Zhang, L. Luo, R. Guo, and Yu. Wang, Optik, 225: 165814 (2021); https://doi.org/10.1016/j.ijleo.2020.165814
- S. N. Ogugua, H. C. Swart, and O. M. Ntwaeaborwa, Physica B, 535: 143 (2018); https://doi.org/10.1016/j.physb.2017.07.006
- Ch. A. Rao and K. V. R. Murthy, Int. J. Sci. Res. (IJSR), 10, No. 1: 516 (2021); doi:10.21275/SR21110114938
- H. Feng, J. Chen, Zh. Zhang, Y. Wang, Zh. Xu, J. Zhao, and R. Mao, Radiat. Meas., 109: 8 (2018); https://doi.org/10.1016/j.radmeas.2017.12.001
- V. S. Urusov, Teoriya Izomorfnoi Smesimosti [The Theory of Isomorphous Miscibility] (Ìoskva: Nauka: 1977) (in Russian).
- V. S. Urusov, Fortschr. Mineral., 52: 141 (1975).
- V. S. Urusov, V. L. Tauson, and V. V. Akimov, Geokhimiya Tverdogo Tela [Geochemistry of Solid State] (Moskva: GEOS: 1997) (in Russian).
- D. Spassky, A. Vasil’ev, V. Nagirnyi, I. Kudryavtseva, D. Deyneko, I. Nikiforov, I. Kondratyev, and B. Zadneprovski, Materials, 15, No. 19: 6844 (2022); https://doi.org/10.3390/ma15196844
- V. S. Voznyak-Levushkina, A. A. Arapova, D. A. Spassky, I. V. Nikiforov, and B. I. Zadneprovski, Phys. Solid State, 64, No. 11: 567 (2022); https://doi.org/10.1134/S1063783422110130
- E. I. Get’man, S. V. Radio, and L. I. Ardanova, Inorg. Mater., 54, No. 6: 596 (2018); https://doi.org/10.1134/S0020168518060031
- R. D. Shannon, Acta Crystallogr., Sect. A, 32, No. 5: 751 (1976); https://doi.org/10.1107/S0567739476001551
- K. Li, and D. Xue, J. Phys. Chem. A, 110, No. 39: 11332 (2006); https://doi.org/10.1021/jp062886k
- J. Felsche, The Crystal Chemistry of the Rare-Earth Silicates. In: Rare Earths. Structure and Bonding (Berlin–Heidelberg: Springer: 1973), vol. 13; https://doi.org/10.1007/3-540-06125-8_3
- R. Becker, Z. Metallkd., 29: 245 (1937) (in German).
- J. Wang, Sh. Tian, G. Li, F. Liao, and X. Jing, Mater. Res. Bull., 36, No. 10: 1855 (2001); https://doi.org/10.1016/S0025-5408(01)00664-X
- E. G. Yukihara, L. G. Jacobsohn, M. W. Blair, B. L. Bennett, S. C. Tornga, R. E. Muenchausen, J. Lumin., 130, No. 12: 2309 (2010); https://doi.org/10.1016/j.jlumin.2010.07.010
- R. E. Muenchausen, E. A. McKigney, L. G. Jacobsohn, M. W. Blair, B. L. Bennett, and D. W. Cooke, IEEE Transactions on Nuclear Science, 55, No. 3: 1532 (2008); doi:10.1109/TNS.2008.922844
- E. I. Get’man, Yu. A. Oleksii, S. V. Radio, and L. I. Ardanova, Tonkie Khimicheskie Tekhnologii [Fine Chemical Technologies], 15, No. 5: 54 (2020); https://doi.org/10.32362/2410-6593-2020-15-5-54-62
- S. S. Batsanov, Strukturnaya Khimiya. Fakty i Zavisimosti [Structural Chemistry. Facts and Dependences] (Ìoskva: Dialog-MGU: 2000) (in Russian).
- S. S. Batsanov, Russ. Chem. Rev., 37, No. 5: 332 (1968); https://doi.org/10.1070/RC1968v037n05ABEH001639
- R. Hoppe, Adv. Fluor. Chem., 6: 387 (1970).
- B. Grynyov, V. Ryzhikov, J. K. Kim, and M. Jae, Scintillator Crystals, Radiation Detectors & Instruments on Their Base (Kharkiv: 2004); http://functmaterials.org.ua/contents/book/Ryzhikov-2004.pdf
- E. I. Get’man and S. V. Radio, Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications. Springer Proceedings in Physics (Eds. O. Fesenko and L. Yatsenko) (Springer: Cham.: 2021), vol. 246; https://doi.org/10.1007/978-3-030-51905-6_39
- S. N. Ogugua, R. L. Nyenge, P. T. Sechogela, H. C. Swart, and O. M. Ntwaeaborwa, J. Vac. Sci. Technol. A, 34, No. 19: 021520 (2016); https://doi.org/10.1116/1.4942502
- S. N. Ogugua, S. K. K. Shaat, H. C. Swart, R. E. Kroon, and O. M. Ntwaeaborwa, J. Alloys Compd., 775: 950 (2019); https://doi.org/10.1016/j.jallcom.2018.10.090
- V. Y. Ivanov, V. A. Pustovarov, M. Kirm, E. S. Shlygin, and K. I. Shirinskii, Phys. Solid State, 47, No. 8: 1492 (2005); https://doi.org/10.1134/1.2014499
- K. Shakampally, P. M. Rao, and K. V. R. Murthy, International Journal for Research in Applied Science & Engineering Technology (IJRASET), 5, No. XI: 1735 (2017).
- T. Utsu and S. Akiyama, J. Cryst. Growth, 109, Nos. 1–4: 385 (1991); https://doi.org/10.1016/0022-0248(91)90207-LZ
.
|