Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

S. V. PRYLUTSKA, T. A. TKACHENKO, and V. V. TKACHENKO
Application of Carbon Nanomaterials for the Regulation of Stress Resistance in Agricultural Plants
923–944 (2023)

PACS numbers: 01.30.Rr, 01.30.Tt, 81.05.U-, 87.85.Rs, 88.05.Qr, 88.20.dj, 91.62.Bf

Carbon nanoallotropes, namely, graphene, fullerene and their derivatives, single- and multiwalled nanotubes, cause the great interest to researchers and their using not only in industry, medicine, pharmacy, but also in agriculture. There is a large number of literary data on the effect of carbon nanomaterials against the plant organism, not only as xenobiotics, but their use in crop production, namely, as: growth and development regulators; substances to increase the resistance of various crops to abiotic stress; targeted means for the delivery of fertilizers, plant protection means; stimulators of the accumulation of pharmaceutically active compounds. Research data are contradictory, as they differ in terms of the type of plant and the stage of its ontogenesis, the peculiarities of its cultivation, the type of nanoallotropes of carbon, the dose, method and duration of exposure, the size and purity of nanoparticles. At high concentrations, carbon nanoparticles cause toxic effects, which are accompanied by an impact on the processes of plant growth and development, inhibition of photosynthetic processes, and the induction of oxidative stress. At the same time, at low and moderate concentrations, carbon nanoparticles mainly stimulate the germination of seeds, the growth and development of vegetative parts of the plant and roots, improve the efficiency of photosynthesis, and contribute to both the protection of the plant from the effects of stressful environmental conditions and the accumulation of pharmaceutically valuable compounds. The presented review summarizes the data of the latest scientific research on the effect of carbon nanoallotropes on the plant organism and the possibility of their use as regulators of stress resistance in the cultivation of agricultural crops.

Key words: carbon nanoparticles, single- and multiwalled nanotubes, graphene, fullerene C60, stress resistance, plants.

https://doi.org/

References
  1. D. B. Lobell, and S. M. Gourdji, Plant Physiology, 160, Iss. 4: 1686 (2012); https://doi.org/10.1104/pp.112.208298
  2. D. Rawtani, G. Gupta, N. Khatri, P. K. Rao, and C. M. Hussain, Science of The Total Environment, 850: 157932 (2022); doi:10.1016/j.scitotenv.2022.157932
  3. D. B. Lobell, W. Schlenker, and J. Costa-Roberts, Science, 333: 616 (2011); doi:10.1126/science.1204531
  4. J. L. Hatfield, K. J. Boote, B. A. Kimball, L. H. Ziska, R. C. Izaurralde, D. Ort, A. M. Thomson, and D. Wolfe, Agron J., 103: 351 (2011); doi:10.2134/agronj2010.0303
  5. Yu. E. Kolupaev and Yu. V. Karpets, Fiziol. Rast. Genet., 49, No 6: 463 (2017); doi:10.15407/frg2017.06.463
  6. M. S. Iqbal, A. K. Singh, and M. I. Ansari, New Frontiers in Stress Management for Durable Agriculture (Singapore: Springer: 2020), p. 35; doi:10.1007/978-981-15-1322-0_3
  7. N. Bechtaoui, M. K. Rabiu, A. Raklami, K. Oufdou, M. Hafidi, and M. Jemo, Front. Plant Sci., 12: 679916 (2021); doi:10.3389/fpls.2021.679916
  8. V. V. Kumari, P. Banerjee, V. C. Verma, S. Sukumaran, M. A. S. Chandran, K. A. Gopinath, G. Venkatesh, S. K. Yadav, V. K. Singh, and N. K. Awasthi, Int. J. Mol. Sci., 23, No. 15: 8519 (2022); doi:10.3390/ijms23158519
  9. N. Esmaeili, G. Shen, and H. Zhang, Front. Plant Sci., 13: 1011985 (2022); doi:10.3389/fpls.2022.1011985
  10. S. V. Prylutska, A. P. Burlaka, and P. P. Klymenko, I. I. Grynyuk, Y. I. Prylutskyy, C. Sch?tze, and U. Ritter, Cancer Nano, 2: 105 (2011); https://doi.org/10.1007/s12645-011-0020-x
  11. F. J. Rodr?guez-Lozano, D. Garc?a-Bernal, S. Aznar-Cervantes, R. E. O?ate-S?nchez, and J. M. Moraleda, Transl. Res., 166, No. 4: 399 (2015); doi:10.1016/j.trsl.2015.04.003
  12. S. K. Debnath and R. Srivastava, Front. Nanotechnol., 3: 644564 (2021); doi:10.3389/fnano.2021.644564
  13. H. Hu, Y. C. Ni, S. K. Mandal, V. Montana, N. Zhao, R. C. Haddon, and V. Parpura, J. Phys. Chem. B, 109: 4285 (2005); doi:10.1021/jp0441137
  14. L. Qian, Y. Chengfei, Ch. Tao, D. Changkun, and Z. Hongtian, AIP Advances, 12, No. 5: 055124 (2022); doi:10.1063/5.0090006
  15. R. A. MacDonald, B. F. Laurenzi, G. Viswanathan, P. M. Ajayan, and J. P. Stegemann, Journal of Biomedical Materials Research, 74A, Iss. 3: 489 (2005); doi:10.1002/jbm.a.30386
  16. D. K. Tripathi, S. Gaur, S. Singh, S. Singh, R. Pandey, V. P. Singh, N. C. Sharma, S. M. Prasad, N. K. Dubey, and D. K. Chauhan, Plant Physiology et Biochemistry, 110: 2 (2016); doi:10.1016/j.plaphy.2016.07.030
  17. M. F. Serag, N. Kaji, S. Habuchi, A. Bianco, and Y. Baba, RSC Adv., 3: 4856 (2013); doi:10.1039/c2ra22766e
  18. P. Begum, R. Ikhtiari, B. Fugetsu, M. Matsuoka, T. Akasaka, and F. Watari, Applied Surface Science, 262: 120 (2012); doi:10.1016/j.apsusc.2012.03.028
  19. S. V. Prylutska, D. V. Franskevych, and A. I. Yemets, Cytol. Genet., 56, No. 4: 351 (2022); doi:10.3103/S0095452722040077
  20. Y. Wang, Z. Shu, W. Wang, X. Jiang, D. Li, J. Pan, and X. Li, Biol. Plant., 60: 443 (2016); doi:10.1007/s10535-016-0618-2
  21. Z. Cao, H. Zhou, and L. Kong, L. Li, R. Wang, and W. A. Shen, Nanoscale Res. Lett., 15, No. 1: 49 (2020); doi:10.1186/s11671-020-3276-4
  22. M. V. Khodakovskaya, K. De Silva, A. S. Biris, E. Dervishi, and H. Villagarcia, ACS Nano, 6, No. 3: 2128 (2012); doi:10.1021/nn204643g
  23. S.-Y. Kwak, T. T. S. Lew, C. J. Sweeney, V. B. Koman, M. H. Wong, K. Bohmert-Tatarev, K. D. Snell, J. S. Seo, N. H. Chua, and M. S. Strano, Nat. Nanotechnol., 14, No. 5: 447 (2019); doi:10.1038/s41565-019-0375-4
  24. T. T. S. Lew, Ì. Í. Wong, S.-Y. Kwak, R. Sinclair, V. B. Koman, and M. S. Strano, Small, 14, No. 44: e1802086 (2018); doi:10.1002/smll.201802086
  25. J. P. Giraldo, M. P. Landry, S. M. Faltermeier,; T. P. Mc Nicholas, N. M. Iverson, A. A. Boghossian, N. F. Reuel, A. J. Hilmer, F. Sen, J. A. Brew, and M. S. Strano, Nat. Mater., 13, No. 4: 400 (2014); doi:10.1038/nmat3890
  26. V. Velikova, N. Petrova, L. Kov?cs, A. Petrova, D. Koleva, T. Tsonev, S. Taneva, P. Petrov, and S. Krumova, Int. J. Mol. Sci., 22, No. 9: 4878 (2021); doi:10.3390/ijms22094878
  27. C. X. Shen, Q. F. Zhang, J. Li, F. C. Bi, and N. Yao, Am. J. Bot., 97, No. 10: 1602 (2010); doi:10.3732/ajb.1000073
  28. M. Ghasempour, A. Iranbakhsh, M. Ebadi, and Z. Oraghi Ardebili, 3 Biotech., 9, No. 11: 404 (2019); doi:10.1007/s13205-019-1934-y
  29. M. C. Mart?nez-Ballesta, L. Zapata, N. Chalbi, and M. Carvajal, J. Nanobiotechnol., 14: 42 (2016); doi:10.1186/s12951-016-0199-4
  30. D. K. Tiwari, N. Dasgupta-Schubert, L. M. Villase?or Cendejas, J. Villegas, L. Carreto Montoya, and S. E. Borjas Garc?a, Appl. Nanosci., 4: 577 (2014); doi:10.1007/s13204-013-0236-7
  31. Y. Hao, Y. Yu, G. Sun, X. Gong, Y. Jiang, G. Lv, Y. Zhang, L. Li, Y. Zhao, D. Sun, W. Gu, and C. Qian, Plants, 12, No 8: 1604 (2023); doi:10.3390/plants12081604
  32. H. C. Oliveira, A. B. Seabra, S. Kondak, O. P. Adedokun, and Z. Kolbert, Journal of Experimental Botany, 74, Iss. 12: 3406 (2023); doi:10.1093/jxb/erad107
  33. K. Keita, F. C. Okafor, L. M. Nyochembeng, A. Overton, S. Vr, and J. A. Odutola, J. Nanosci. Curr. Res., 3: 123 (2018); doi:10.4172/2572-0813.1000123
  34. P. Miralles, Å. Johnson, T. L. Church, and A. T. Harris, J. R. Soc. Interface, 9, Iss. 77: 93514 (2012); doi:10.1098/rsif.2012.0535
  35. R. Avanasi, W. A. Jackson, B. Sherwin, J. F. Mudge, and T. A. Anderson, Ånviron. Sci. Technol., 48, No. 5: 2792 (2014); doi:10.1021/es405306w
  36. Ch. Wang, H. Zhang, L. Ruan, L. Chen, H. Li, X.-L. Chang, X. Zhang, and S.-T. Yang, Environ. Sci.: Nano, 4, No. 3: 799 (2016); https://doi.org/10.1039/C5EN00276A
  37. C. Kole, P. Kole, K. M. Randunu, P. Choudhary, R. Podila, P. C. Ke, A. M. Rao, and R. K. Marcus, BMC Biotechnol., 13: 37 (2013); doi:10.1186/1472-6750-13-37
  38. À. He, J. Jiang, J. Ding, and G. D. Sheng, Chemosphere, 278: 130474 (2021); doi:10.1016/j.chemosphere.2021.130474
  39. C. Liang, H. Xiao, Z. Hu, X. Zhang, and J. Hu, Environ. Pollut., 235: 330 (2018); doi:10.1016/j.envpol.2017.12.062
  40. K. R. Guo, M. Adeel, F. Hu, Z. Z. Xiao, K. X. Wang, Y. Hao, Y. K. Rui, and X. L. Chang, J. Nanosci. Nanotechnol., 21, No. 6: 3197 (2021); doi:10.1166/jnn.2021.19307
  41. J. Gao, Y. Wang, K. M. Folta, V. Krishna, W. Bai, P. Indeglia, A. Georgieva, H. Nakamura, B. Koopman, and B. Moudgil, PLoS One, 6, No. 5: e19976 (2011); doi:10.1371/journal.pone.0019976
  42. L. Chen, C. Wang, H. Li, X. Qu, S. Yang, and X. Chang, Environmental Science & Technology, 51, No. 17: 10146 (2017); doi:10.1021/acs.est.7b00822
  43. C. Huang, T. Xia, J. Niu, Y. Yang, S. Lin, X. Wang, G. Yang, L. Mao, and B. Xing, Angewandte Chemie, 57, No. 31: 9759 (2018); doi:10.1002/anie.201805099
  44. L. Chen, S. Yang, Y. Liu, M. Mo, X. Guan, L. Huang, C. Sun, S. Yang, and X. Chang, RSC Advances, 8, No. 28: 15336 (2018); doi:10.1039/c8ra01753k
  45. S. Zhao, X. Zhu, M. Mou, Z. Wang, and L. Duo, Ecotoxicology and Environmental Safety, 234: 113399 (2022); doi:10.1016/j.ecoenv.2022.113399
  46. Z. Zhou, J. Li, C. Li, Q. Guo, X. Hou, C. Zhao, Y. Wang, C. Chen, and Q. Wang, Plants, 12, No. 9: 1738 (2023); doi:10.3390/plants12091738
  47. X. Xiao, X. Wang, L. Liu, C. Chen, A. Sha, and J. Li, Ecotoxicology and Environmental Safety, 234: 113383 (2022); doi:10.1016/j.ecoenv.2022.113383
  48. P. Begum, R. Ikhtiari, and B. Fugetsu, Carbon, 49: 3907 (2011); doi:10.1016/j.carbon.2011.05.029
  49. X. Guo, J. Zhao, R. Wang, H. Zhang, B. Xing, M. Naeem, T. Yao, R. Li, R. F. Xu, Z. Zhang, and J. Wu, PPB, 162: 447 (2021); doi:10.1016/j.plaphy.2021.03.013
  50. W. Ren, H. Chang, and Y. Teng, Sci. Total Environ., 572: 926 (2016); doi:10.1016/j.scitotenv.2016.07.214
  51. Z. Chen, J. Zhao, J. Song, S. Han, Y. Du, Y. Qiao, Z. Liu, J. Qiao, W. Li, J. Li, H. Wang, B. Xing, and Q. Pan, PloS One, 16, No. 1: e0244856 (2021); doi:10.1371/journal.pone.0244856
  52. M. R. Malekzadeh, H. R. Roosta, and H. M. Kalaji, Sci. Rep., 13: 8457 (2023); doi:10.1038/s41598-023-35725-0
  53. X. Zhang, H. Cao, J. Zhao, H. Wang, B. Xing, Z. Chen, X. Li, and J. Zhang, Physiology and Molecular Biology of Plants, 27: 815 (2021); doi:10.1007/s12298-021-00979-3
  54. S. Zhao, Q. Wang, Y. Zhao, Q. Rui, and D. Wang, Environ. Toxicol. Pharmacol., 39, No. 1: 145 (2015); doi:10.1016/j.etap.2014.11.014
  55. S. Dong, X. Jing, S. Lin, K. Lu, W. Li, J. Lu, M. Li, S. Gao, S. Lu, D. Zhou, C. Chen, B. Xing, and L. Mao, Environ. Sci. Technol., 56, No. 17: 12179 (2022); doi:10.1021/acs.est.2c01926
  56. S. Wang, Y. Liu, X. Wang, H. Xiang, D. Kong, N. Wei, W. Guo, and H. Sun, Sci. Rep., 13, No. 1: 2650 (2023); doi:10.1038/s41598-023-29725-3À
  57. F. S. Mirza, Z. E. Aftab, M. D. Ali, A. Aftab, T. Anjum, H. Rafiq, and G. Li, Front Plant Sci., 13: 1040037 (2022); doi:10.3389/fpls.2022.1040037
  58. S. Liu, H. Wei, Z. Li, S. Li, H. Yan, Y. He, and Z. Tian, J. Nanosci. Nanotechnol., 15, No. 4: 2695 (2015); doi:10.1166/jnn.2015.9254
  59. Q. Zhou, and X. Hu, Environ. Sci. Technol., 51, No. 4: 2022 (2017); doi:10.1021/acs.est.6b05591
  60. J. Du, T. Wang, Q. Zhou, X. Hu, J. Wu, G. Li, G. Li, F. Hou, and Y. Wu, Ecotoxicol. Environ. Saf., 192: 110304 (2020); doi:10.1016/j.ecoenv.2020.110304
  61. D. Bradshaw and K. Hardwick, Biological Journal of the Linnean Society, 37, Iss. 1–2: 137 (1989); https://doi.org/10.1111/j.1095-8312.1989.tb02099.x
  62. Z. Chen and D. E. Soltis, Plant, Cell and Environment, 43: 2827 (2020); doi:10.1111/pce.13922
  63. G. R. Cramer, K. Urano, S. Delrot, M. Pezzotti, and K. Shinozaki, BMC Plant Biol., 11: 163 (2011); doi:10.1186/1471-2229-11-163
  64. S. Fahad, A. A. Bajwa, U. Nazir, S. A. Anjum, A. Farooq, A. Zohaib, S. Sadia, W. Nasim, S. Adkins, S. Saud, M. Z. Ihsan, H. Alharby, C. Wu, D. Wang, and J. Huang, Front. Plant Sci., 8: 1147 (2017); doi:10.3389/fpls.2017.01147
  65. H. Aguirre-Becerra, A. A. Feregrino-P?rez, K. Esquivel, C. E. Perez-Garcia, M. C. Vazquez-Hernandez, and A. Mariana-Alvarado, Front. Plant Sci., 13: 1023636 (2022); doi:10.3389/fpls.2022.1023636
  66. S. C. Arruda, A. L. Silva, R. M. Galazzi, R. A. Azevedo, and M. A. Arruda, Talanta, 131: 693 (2015); doi:10.1016/j.talanta.2014.08.050
  67. J. Wohlmuth, D. Tekielska, J. ?echov?, and M. Bar?nek, Plants, 11, No. 18: 2405 (2022); doi:10.3390/plants11182405
  68. S. Samadi, M. J. Saharkhiz, M. Azizi, L. Samiei, A. Karami, and M. Ghorbanpour, Industrial Crops and Products, 165: 113424 (2021); doi:10.1016/j.indcrop.2021.113424
  69. M. Hatami, J. Hadian, and M. Ghorbanpour, J. Hazard Mater., 324, Pt. B: 306 (2017); doi:10.1016/j.jhazmat.2016.10.064
  70. Y. Gonz?lez-Garc?a, G. Cadenas-Pliego, ?. G. Alpuche-Sol?s, R. I. Cabrera, and A. Ju?rez-Maldonado, Nanomaterials (Basel, Switzerland), 11, No. 5: 1080 (2021); doi:10.3390/nano11051080
  71. À. Suboti?, S. Jevremovi?, S. Milo?evi?, M. Trifunovi?-Mom?ilov, M. ?uri?, and ?. Koruga, Plants (Basel), 11, No. 21: 2810 (2022); doi:10.3390/plants11212810
  72. Ñ. Ozfidan-Konakci, F. N. Alp, B. Arikan, M. Balci, Z. Parmaksizoglu, E. Yildiztugay, and H. Cavusoglu, Physiol. Plant, 174, No. 3: e13720 (2022); doi:10.1111/ppl.13720
  73. F. Shafiq, M. Iqbal, M. Ali, and M. A. Ashraf, Ecotoxicol. Environ. Saf., 211: 111901 (2021); doi:10.1016/j.ecoenv.2021.111901
  74. M. Bori?ev, I. Bori?ev, M. ?upunski, D. Arsenov, S. Pajevi?, ?. ?ur?i?, J. Vasin, and A. Djordjevic, PLoS One, 11: e0166248 (2016); doi:10.1371/journal.pone.0166248
  75. M. Farooq, A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra, Agronomy for Sustainable Development, 29: 185 (2009); doi:10.1051/agro:2008021
  76. J. L. Xiong, J. Li, H. C. Wang, C. L. Zhang, and M. S. Naeem, Plant Physiol. Biochem., 129: 130 (2018); doi:10.1016/j.plaphy.2018.05.026
  77. H. Kong, X. Meng, N. A. Akram, F. Zhu, J. Hu, and Z. Zhang, Plants (Basel), 12, No. 6: 1417 (2023); doi:10.3390/plants12061417
  78. J. L. Xiong and N. Ma, Int. J. Mol. Sci., 23: 15304 (2022); doi:10.3390/ijms232315304
  79. P. Wang, E. Lombi, F. J. Zhao, and P. M. Kopittke, Trends Plant Sci., 21: 699 (2016); doi:10.1016/j.tplants.2016.04.005
  80. T. Zhang, W. Lv, H. Zhang, L. Ma, P. Li, L. Ge, and G. Li, BMC Plant Biology, 18: 235 (2018); doi:10.1186/s12870-018-1441-z
  81. T. Lopes, C. Cruz, P. Cardoso, R. Pinto, P. A. A. P. Marques, and E. A. Figueira, Nanomaterials (Basel), 11, No. 3: 771 (2021); doi:10.3390/nano11030771
  82. R. F. Halawani, H. AbdElgawad, F. A. Aloufi, M. A. Balkhyour, A. Zrig, and A. H. Hassan, Frontiers in Plant Science, 14: 1158031 (2023); doi:10.3389/fpls.2023.1158031
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement