Download the full version of the article (in PDF format)
S. V. PRYLUTSKA, T. A. TKACHENKO, and V. V. TKACHENKO
Application of Carbon Nanomaterials for the Regulation of Stress Resistance in Agricultural Plants
923–944 (2023)
PACS numbers: 01.30.Rr, 01.30.Tt, 81.05.U-, 87.85.Rs, 88.05.Qr, 88.20.dj, 91.62.Bf
Carbon nanoallotropes, namely, graphene, fullerene and their derivatives, single- and multiwalled nanotubes, cause the great interest to researchers and their using not only in industry, medicine, pharmacy, but also in agriculture. There is a large number of literary data on the effect of carbon nanomaterials against the plant organism, not only as xenobiotics, but their use in crop production, namely, as: growth and development regulators; substances to increase the resistance of various crops to abiotic stress; targeted means for the delivery of fertilizers, plant protection means; stimulators of the accumulation of pharmaceutically active compounds. Research data are contradictory, as they differ in terms of the type of plant and the stage of its ontogenesis, the peculiarities of its cultivation, the type of nanoallotropes of carbon, the dose, method and duration of exposure, the size and purity of nanoparticles. At high concentrations, carbon nanoparticles cause toxic effects, which are accompanied by an impact on the processes of plant growth and development, inhibition of photosynthetic processes, and the induction of oxidative stress. At the same time, at low and moderate concentrations, carbon nanoparticles mainly stimulate the germination of seeds, the growth and development of vegetative parts of the plant and roots, improve the efficiency of photosynthesis, and contribute to both the protection of the plant from the effects of stressful environmental conditions and the accumulation of pharmaceutically valuable compounds. The presented review summarizes the data of the latest scientific research on the effect of carbon nanoallotropes on the plant organism and the possibility of their use as regulators of stress resistance in the cultivation of agricultural crops.
Key words: carbon nanoparticles, single- and multiwalled nanotubes, graphene, fullerene C60, stress resistance, plants.
Issue DOI: https://doi.org/10.15407/nnn.21.04.923
References
- D. B. Lobell, and S. M. Gourdji, Plant Physiology, 160, Iss. 4: 1686 (2012); https://doi.org/10.1104/pp.112.208298
- D. Rawtani, G. Gupta, N. Khatri, P. K. Rao, and C. M. Hussain, Science of The Total Environment, 850: 157932 (2022); doi:10.1016/j.scitotenv.2022.157932
- D. B. Lobell, W. Schlenker, and J. Costa-Roberts, Science, 333: 616 (2011); doi:10.1126/science.1204531
- J. L. Hatfield, K. J. Boote, B. A. Kimball, L. H. Ziska, R. C. Izaurralde, D. Ort, A. M. Thomson, and D. Wolfe, Agron J., 103: 351 (2011); doi:10.2134/agronj2010.0303
- Yu. E. Kolupaev and Yu. V. Karpets, Fiziol. Rast. Genet., 49, No 6: 463 (2017); doi:10.15407/frg2017.06.463
- M. S. Iqbal, A. K. Singh, and M. I. Ansari, New Frontiers in Stress Management for Durable Agriculture (Singapore: Springer: 2020), p. 35; doi:10.1007/978-981-15-1322-0_3
- N. Bechtaoui, M. K. Rabiu, A. Raklami, K. Oufdou, M. Hafidi, and M. Jemo, Front. Plant Sci., 12: 679916 (2021); doi:10.3389/fpls.2021.679916
- V. V. Kumari, P. Banerjee, V. C. Verma, S. Sukumaran, M. A. S. Chandran, K. A. Gopinath, G. Venkatesh, S. K. Yadav, V. K. Singh, and N. K. Awasthi, Int. J. Mol. Sci., 23, No. 15: 8519 (2022); doi:10.3390/ijms23158519
- N. Esmaeili, G. Shen, and H. Zhang, Front. Plant Sci., 13: 1011985 (2022); doi:10.3389/fpls.2022.1011985
- S. V. Prylutska, A. P. Burlaka, and P. P. Klymenko, I. I. Grynyuk, Y. I. Prylutskyy, C. Sch?tze, and U. Ritter, Cancer Nano, 2: 105 (2011); https://doi.org/10.1007/s12645-011-0020-x
- F. J. Rodr?guez-Lozano, D. Garc?a-Bernal, S. Aznar-Cervantes, R. E. O?ate-S?nchez, and J. M. Moraleda, Transl. Res., 166, No. 4: 399 (2015); doi:10.1016/j.trsl.2015.04.003
- S. K. Debnath and R. Srivastava, Front. Nanotechnol., 3: 644564 (2021); doi:10.3389/fnano.2021.644564
- H. Hu, Y. C. Ni, S. K. Mandal, V. Montana, N. Zhao, R. C. Haddon, and V. Parpura, J. Phys. Chem. B, 109: 4285 (2005); doi:10.1021/jp0441137
- L. Qian, Y. Chengfei, Ch. Tao, D. Changkun, and Z. Hongtian, AIP Advances, 12, No. 5: 055124 (2022); doi:10.1063/5.0090006
- R. A. MacDonald, B. F. Laurenzi, G. Viswanathan, P. M. Ajayan, and J. P. Stegemann, Journal of Biomedical Materials Research, 74A, Iss. 3: 489 (2005); doi:10.1002/jbm.a.30386
- D. K. Tripathi, S. Gaur, S. Singh, S. Singh, R. Pandey, V. P. Singh, N. C. Sharma, S. M. Prasad, N. K. Dubey, and D. K. Chauhan, Plant Physiology et Biochemistry, 110: 2 (2016); doi:10.1016/j.plaphy.2016.07.030
- M. F. Serag, N. Kaji, S. Habuchi, A. Bianco, and Y. Baba, RSC Adv., 3: 4856 (2013); doi:10.1039/c2ra22766e
- P. Begum, R. Ikhtiari, B. Fugetsu, M. Matsuoka, T. Akasaka, and F. Watari, Applied Surface Science, 262: 120 (2012); doi:10.1016/j.apsusc.2012.03.028
- S. V. Prylutska, D. V. Franskevych, and A. I. Yemets, Cytol. Genet., 56, No. 4: 351 (2022); doi:10.3103/S0095452722040077
- Y. Wang, Z. Shu, W. Wang, X. Jiang, D. Li, J. Pan, and X. Li, Biol. Plant., 60: 443 (2016); doi:10.1007/s10535-016-0618-2
- Z. Cao, H. Zhou, and L. Kong, L. Li, R. Wang, and W. A. Shen, Nanoscale Res. Lett., 15, No. 1: 49 (2020); doi:10.1186/s11671-020-3276-4
- M. V. Khodakovskaya, K. De Silva, A. S. Biris, E. Dervishi, and H. Villagarcia, ACS Nano, 6, No. 3: 2128 (2012); doi:10.1021/nn204643g
- S.-Y. Kwak, T. T. S. Lew, C. J. Sweeney, V. B. Koman, M. H. Wong, K. Bohmert-Tatarev, K. D. Snell, J. S. Seo, N. H. Chua, and M. S. Strano, Nat. Nanotechnol., 14, No. 5: 447 (2019); doi:10.1038/s41565-019-0375-4
- T. T. S. Lew, Ì. Í. Wong, S.-Y. Kwak, R. Sinclair, V. B. Koman, and M. S. Strano, Small, 14, No. 44: e1802086 (2018); doi:10.1002/smll.201802086
- J. P. Giraldo, M. P. Landry, S. M. Faltermeier,; T. P. Mc Nicholas, N. M. Iverson, A. A. Boghossian, N. F. Reuel, A. J. Hilmer, F. Sen, J. A. Brew, and M. S. Strano, Nat. Mater., 13, No. 4: 400 (2014); doi:10.1038/nmat3890
- V. Velikova, N. Petrova, L. Kov?cs, A. Petrova, D. Koleva, T. Tsonev, S. Taneva, P. Petrov, and S. Krumova, Int. J. Mol. Sci., 22, No. 9: 4878 (2021); doi:10.3390/ijms22094878
- C. X. Shen, Q. F. Zhang, J. Li, F. C. Bi, and N. Yao, Am. J. Bot., 97, No. 10: 1602 (2010); doi:10.3732/ajb.1000073
- M. Ghasempour, A. Iranbakhsh, M. Ebadi, and Z. Oraghi Ardebili, 3 Biotech., 9, No. 11: 404 (2019); doi:10.1007/s13205-019-1934-y
- M. C. Mart?nez-Ballesta, L. Zapata, N. Chalbi, and M. Carvajal, J. Nanobiotechnol., 14: 42 (2016); doi:10.1186/s12951-016-0199-4
- D. K. Tiwari, N. Dasgupta-Schubert, L. M. Villase?or Cendejas, J. Villegas, L. Carreto Montoya, and S. E. Borjas Garc?a, Appl. Nanosci., 4: 577 (2014); doi:10.1007/s13204-013-0236-7
- Y. Hao, Y. Yu, G. Sun, X. Gong, Y. Jiang, G. Lv, Y. Zhang, L. Li, Y. Zhao, D. Sun, W. Gu, and C. Qian, Plants, 12, No 8: 1604 (2023); doi:10.3390/plants12081604
- H. C. Oliveira, A. B. Seabra, S. Kondak, O. P. Adedokun, and Z. Kolbert, Journal of Experimental Botany, 74, Iss. 12: 3406 (2023); doi:10.1093/jxb/erad107
- K. Keita, F. C. Okafor, L. M. Nyochembeng, A. Overton, S. Vr, and J. A. Odutola, J. Nanosci. Curr. Res., 3: 123 (2018); doi:10.4172/2572-0813.1000123
- P. Miralles, Å. Johnson, T. L. Church, and A. T. Harris, J. R. Soc. Interface, 9, Iss. 77: 93514 (2012); doi:10.1098/rsif.2012.0535
- R. Avanasi, W. A. Jackson, B. Sherwin, J. F. Mudge, and T. A. Anderson, Ånviron. Sci. Technol., 48, No. 5: 2792 (2014); doi:10.1021/es405306w
- Ch. Wang, H. Zhang, L. Ruan, L. Chen, H. Li, X.-L. Chang, X. Zhang, and S.-T. Yang, Environ. Sci.: Nano, 4, No. 3: 799 (2016); https://doi.org/10.1039/C5EN00276A
- C. Kole, P. Kole, K. M. Randunu, P. Choudhary, R. Podila, P. C. Ke, A. M. Rao, and R. K. Marcus, BMC Biotechnol., 13: 37 (2013); doi:10.1186/1472-6750-13-37
- À. He, J. Jiang, J. Ding, and G. D. Sheng, Chemosphere, 278: 130474 (2021); doi:10.1016/j.chemosphere.2021.130474
- C. Liang, H. Xiao, Z. Hu, X. Zhang, and J. Hu, Environ. Pollut., 235: 330 (2018); doi:10.1016/j.envpol.2017.12.062
- K. R. Guo, M. Adeel, F. Hu, Z. Z. Xiao, K. X. Wang, Y. Hao, Y. K. Rui, and X. L. Chang, J. Nanosci. Nanotechnol., 21, No. 6: 3197 (2021); doi:10.1166/jnn.2021.19307
- J. Gao, Y. Wang, K. M. Folta, V. Krishna, W. Bai, P. Indeglia, A. Georgieva, H. Nakamura, B. Koopman, and B. Moudgil, PLoS One, 6, No. 5: e19976 (2011); doi:10.1371/journal.pone.0019976
- L. Chen, C. Wang, H. Li, X. Qu, S. Yang, and X. Chang, Environmental Science & Technology, 51, No. 17: 10146 (2017); doi:10.1021/acs.est.7b00822
- C. Huang, T. Xia, J. Niu, Y. Yang, S. Lin, X. Wang, G. Yang, L. Mao, and B. Xing, Angewandte Chemie, 57, No. 31: 9759 (2018); doi:10.1002/anie.201805099
- L. Chen, S. Yang, Y. Liu, M. Mo, X. Guan, L. Huang, C. Sun, S. Yang, and X. Chang, RSC Advances, 8, No. 28: 15336 (2018); doi:10.1039/c8ra01753k
- S. Zhao, X. Zhu, M. Mou, Z. Wang, and L. Duo, Ecotoxicology and Environmental Safety, 234: 113399 (2022); doi:10.1016/j.ecoenv.2022.113399
- Z. Zhou, J. Li, C. Li, Q. Guo, X. Hou, C. Zhao, Y. Wang, C. Chen, and Q. Wang, Plants, 12, No. 9: 1738 (2023); doi:10.3390/plants12091738
- X. Xiao, X. Wang, L. Liu, C. Chen, A. Sha, and J. Li, Ecotoxicology and Environmental Safety, 234: 113383 (2022); doi:10.1016/j.ecoenv.2022.113383
- P. Begum, R. Ikhtiari, and B. Fugetsu, Carbon, 49: 3907 (2011); doi:10.1016/j.carbon.2011.05.029
- X. Guo, J. Zhao, R. Wang, H. Zhang, B. Xing, M. Naeem, T. Yao, R. Li, R. F. Xu, Z. Zhang, and J. Wu, PPB, 162: 447 (2021); doi:10.1016/j.plaphy.2021.03.013
- W. Ren, H. Chang, and Y. Teng, Sci. Total Environ., 572: 926 (2016); doi:10.1016/j.scitotenv.2016.07.214
- Z. Chen, J. Zhao, J. Song, S. Han, Y. Du, Y. Qiao, Z. Liu, J. Qiao, W. Li, J. Li, H. Wang, B. Xing, and Q. Pan, PloS One, 16, No. 1: e0244856 (2021); doi:10.1371/journal.pone.0244856
- M. R. Malekzadeh, H. R. Roosta, and H. M. Kalaji, Sci. Rep., 13: 8457 (2023); doi:10.1038/s41598-023-35725-0
- X. Zhang, H. Cao, J. Zhao, H. Wang, B. Xing, Z. Chen, X. Li, and J. Zhang, Physiology and Molecular Biology of Plants, 27: 815 (2021); doi:10.1007/s12298-021-00979-3
- S. Zhao, Q. Wang, Y. Zhao, Q. Rui, and D. Wang, Environ. Toxicol. Pharmacol., 39, No. 1: 145 (2015); doi:10.1016/j.etap.2014.11.014
- S. Dong, X. Jing, S. Lin, K. Lu, W. Li, J. Lu, M. Li, S. Gao, S. Lu, D. Zhou, C. Chen, B. Xing, and L. Mao, Environ. Sci. Technol., 56, No. 17: 12179 (2022); doi:10.1021/acs.est.2c01926
- S. Wang, Y. Liu, X. Wang, H. Xiang, D. Kong, N. Wei, W. Guo, and H. Sun, Sci. Rep., 13, No. 1: 2650 (2023); doi:10.1038/s41598-023-29725-3À
- F. S. Mirza, Z. E. Aftab, M. D. Ali, A. Aftab, T. Anjum, H. Rafiq, and G. Li, Front Plant Sci., 13: 1040037 (2022); doi:10.3389/fpls.2022.1040037
- S. Liu, H. Wei, Z. Li, S. Li, H. Yan, Y. He, and Z. Tian, J. Nanosci. Nanotechnol., 15, No. 4: 2695 (2015); doi:10.1166/jnn.2015.9254
- Q. Zhou, and X. Hu, Environ. Sci. Technol., 51, No. 4: 2022 (2017); doi:10.1021/acs.est.6b05591
- J. Du, T. Wang, Q. Zhou, X. Hu, J. Wu, G. Li, G. Li, F. Hou, and Y. Wu, Ecotoxicol. Environ. Saf., 192: 110304 (2020); doi:10.1016/j.ecoenv.2020.110304
- D. Bradshaw and K. Hardwick, Biological Journal of the Linnean Society, 37, Iss. 1–2: 137 (1989); https://doi.org/10.1111/j.1095-8312.1989.tb02099.x
- Z. Chen and D. E. Soltis, Plant, Cell and Environment, 43: 2827 (2020); doi:10.1111/pce.13922
- G. R. Cramer, K. Urano, S. Delrot, M. Pezzotti, and K. Shinozaki, BMC Plant Biol., 11: 163 (2011); doi:10.1186/1471-2229-11-163
- S. Fahad, A. A. Bajwa, U. Nazir, S. A. Anjum, A. Farooq, A. Zohaib, S. Sadia, W. Nasim, S. Adkins, S. Saud, M. Z. Ihsan, H. Alharby, C. Wu, D. Wang, and J. Huang, Front. Plant Sci., 8: 1147 (2017); doi:10.3389/fpls.2017.01147
- H. Aguirre-Becerra, A. A. Feregrino-P?rez, K. Esquivel, C. E. Perez-Garcia, M. C. Vazquez-Hernandez, and A. Mariana-Alvarado, Front. Plant Sci., 13: 1023636 (2022); doi:10.3389/fpls.2022.1023636
- S. C. Arruda, A. L. Silva, R. M. Galazzi, R. A. Azevedo, and M. A. Arruda, Talanta, 131: 693 (2015); doi:10.1016/j.talanta.2014.08.050
- J. Wohlmuth, D. Tekielska, J. ?echov?, and M. Bar?nek, Plants, 11, No. 18: 2405 (2022); doi:10.3390/plants11182405
- S. Samadi, M. J. Saharkhiz, M. Azizi, L. Samiei, A. Karami, and M. Ghorbanpour, Industrial Crops and Products, 165: 113424 (2021); doi:10.1016/j.indcrop.2021.113424
- M. Hatami, J. Hadian, and M. Ghorbanpour, J. Hazard Mater., 324, Pt. B: 306 (2017); doi:10.1016/j.jhazmat.2016.10.064
- Y. Gonz?lez-Garc?a, G. Cadenas-Pliego, ?. G. Alpuche-Sol?s, R. I. Cabrera, and A. Ju?rez-Maldonado, Nanomaterials (Basel, Switzerland), 11, No. 5: 1080 (2021); doi:10.3390/nano11051080
- À. Suboti?, S. Jevremovi?, S. Milo?evi?, M. Trifunovi?-Mom?ilov, M. ?uri?, and ?. Koruga, Plants (Basel), 11, No. 21: 2810 (2022); doi:10.3390/plants11212810
- Ñ. Ozfidan-Konakci, F. N. Alp, B. Arikan, M. Balci, Z. Parmaksizoglu, E. Yildiztugay, and H. Cavusoglu, Physiol. Plant, 174, No. 3: e13720 (2022); doi:10.1111/ppl.13720
- F. Shafiq, M. Iqbal, M. Ali, and M. A. Ashraf, Ecotoxicol. Environ. Saf., 211: 111901 (2021); doi:10.1016/j.ecoenv.2021.111901
- M. Bori?ev, I. Bori?ev, M. ?upunski, D. Arsenov, S. Pajevi?, ?. ?ur?i?, J. Vasin, and A. Djordjevic, PLoS One, 11: e0166248 (2016); doi:10.1371/journal.pone.0166248
- M. Farooq, A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra, Agronomy for Sustainable Development, 29: 185 (2009); doi:10.1051/agro:2008021
- J. L. Xiong, J. Li, H. C. Wang, C. L. Zhang, and M. S. Naeem, Plant Physiol. Biochem., 129: 130 (2018); doi:10.1016/j.plaphy.2018.05.026
- H. Kong, X. Meng, N. A. Akram, F. Zhu, J. Hu, and Z. Zhang, Plants (Basel), 12, No. 6: 1417 (2023); doi:10.3390/plants12061417
- J. L. Xiong and N. Ma, Int. J. Mol. Sci., 23: 15304 (2022); doi:10.3390/ijms232315304
- P. Wang, E. Lombi, F. J. Zhao, and P. M. Kopittke, Trends Plant Sci., 21: 699 (2016); doi:10.1016/j.tplants.2016.04.005
- T. Zhang, W. Lv, H. Zhang, L. Ma, P. Li, L. Ge, and G. Li, BMC Plant Biology, 18: 235 (2018); doi:10.1186/s12870-018-1441-z
- T. Lopes, C. Cruz, P. Cardoso, R. Pinto, P. A. A. P. Marques, and E. A. Figueira, Nanomaterials (Basel), 11, No. 3: 771 (2021); doi:10.3390/nano11030771
- R. F. Halawani, H. AbdElgawad, F. A. Aloufi, M. A. Balkhyour, A. Zrig, and A. H. Hassan, Frontiers in Plant Science, 14: 1158031 (2023); doi:10.3389/fpls.2023.1158031
|