Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

Vladyslav Lapshuda, Viktoriia Koval, Valerii Barbash, Mykhailo Dusheiko, and Olga Yashchenko
Capacitive Humidity Sensors Based on Nanocellulose Obtained from Various Non-Wood Raw Materials
843–858 (2023)

PACS numbers: 07.07.Df, 68.37.Lp, 68.37.Ps, 77.55.F-, 81.16.-c, 83.80.Mc, 92.60.jk

Humidity sensors are fabricated on base of nanocellulose (NC) using different initial raw materials (reed stalks or wheat straw) and by means of different extraction methods (TEMPO-oxidation or acid hydrolysis). In addition, nanocomposites from NC with addition of polyvinyl alcohol (PVA) are used to improve the mechanical characteristics of nanocellulose films obtained by hydrolysis method. The static and dynamic characteristics of humidity sensors are measured, and their sensitivity, response, hysteresis, response and recovery times, as well as short- and long-term stability are determined. The influence of initial materials and extraction methods for NC, as well as amount of humidity-sensitive material, on device parameters is established. The dependence of sensor sensitivity on the NC mass is determined. In particular, it is shown that NC sensors made of reed have higher sensitivity, but worse stability and dynamic parameters compared to sensors made of wheat. The maximum value of sensitivity (0.204 (%RH)-1) is observed for sensor based on the NC film obtained of reed by TEMPO-oxidation method. Minimal signal fluctuations (10%) during continuous operation for 1 h are observed for NC sensors obtained of wheat by the hydrolysis technique. Improved response time and recovery time (7 s and 6 s) are available for NC sensors obtained of wheat by the TEMPO-oxidation method. As shown, the NC film mass of 0.3 mg is favourable for all sensors. The effect of test signal frequency is as follows: improving of sensitivity occurs at 100 Hz, and of all other parameters—at 1000 Hz.

Key words: nanocellulose, humidity sensors, biodegradable sensors.

https://doi.org/

References
  1. A. Yamamoto, H. Nakamoto, T. Yamaguchi, H. Sakai, M. Kaneko, S. Ohnishi, T. Nishiuma, K. Sawada, Y. Iwata, S. Osawa, K. Ono, and A. Ishikawa, Respir. Med., 190: 106675 (2021); https://doi.org/10.1016/j.rmed.2021.106675
  2. H. Tai, S. Wang, Z. Duan, and Y. Jiang, Sens. Actuators B, 318: 128104 (2020); https://doi.org/10.1016/j.snb.2020.128104
  3. J. Wu, Y. Chen, W. Shen, Y. Wu, and J.-P. Corriou, Ceram. Int., 49, No. 2: 2204 (2023); https://doi.org/10.1016/j.ceramint.2022.09.187
  4. V. Koval, V. Barbash, M. Dusheyko, V. Lapshuda, O. Yashchenko, and Y. Yakimenko, Proc. of Symp. ‘2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)’ (Nov. 9–13, 2020) (Sumy: SumDU), p. 1; https://doi.org/10.1109/NAP51477.2020.930959
  5. H. Niu, W. Yue, Y. Li, F. Yin, S. Gao, C. Zhang, H. Kan, Z. Yao, C. Jiang, and C. Wang, Sens. Actuators B, 334: 129637 (2021); https://doi.org/10.1016/j.snb.2021.129637
  6. G. M. Patel, V. R. Shah, G. J. Bhatt, and P. T. Deota, Nanosensors for Smart Manufacturing (Eds. S. Thomas, T. A. Nguyen, M. Ahmadi, A. Farmani, and G. Yasin) (Kerala, India: Elsevier: 2021), p. 555.
  7. J. Fontes, Sensor Technology: Handbook (Ed. John S. Wilson) (Burlington, MA, U.S.A.: Elsevier: 2005), p. 271.
  8. G. Urban, Anal. Bioanal. Chem., 408, No. 21: 5667 (2016); https://doi.org/10.1007/s00216-016-9637-2
  9. C. K. Chung, C. A. Ku, and Z. E. Wu, Sens. Actuators B, 343: 130156 (2021); https://doi.org/10.1016/j.snb.2021.130156
  10. S. Das, M. L. Rahman, P. P. Mondal, P. L. Mahapatra, and D. Saha, Ceram. Int., 47, No. 23: 33515 (2021); https://doi.org/10.1016/j.ceramint.2021.08.260
  11. F. D. M. Fernandez, M. Bissannagari, and J. Kim, Ceram. Int., 47, No. 17: 24693 (2021); https://doi.org/10.1016/j.ceramint.2021.05.191
  12. V. Manikandan, F. Tudorache, I. Petrila, R. S. Mane, V. Kuncser, B. Vasile, D. Morgan, S. Vigneselvan, and A. Mirzaei, J. Magn. Magn. Mater., 474: 563 (2019); https://doi.org/10.1016/j.jmmm.2018.11.072
  13. S. Ali, M. A. Jameel, A. Gupta, S. J. Langford, and M. Shafiei, Synth. Met., 275: 116739 (2021); https://doi.org/10.1016/j.synthmet.2021.116739
  14. I. Rahim, M. Shah, A. Khan, J. Luo, A. Zhong, M. Li, R. Ahmed, H. Li, Q. Wei, and Y. Fu, Sens. Actuators B, 267: 42 (2018); https://doi.org/10.1016/j.snb.2018.03.069
  15. X. Li, W. Feng, X. Zhang, S. Lin, Y. Chen, C. Chen, S. Chen, W. Wang, and Y. Zhang, Sens. Actuators B, 321: 128483 (2020); https://doi.org/10.1016/j.snb.2020.128483
  16. H. Zhao, Z. Wang, Y. Li, and M. Yang, J. Colloid Interface Sci., 607: 367 (2022); https://doi.org/10.1016/j.jcis.2021.08.214
  17. R. Guo, W. Tang, C. Shen, and X. Wang, Comput. Mater. Sci., 111: 289 (2016); https://doi.org/10.1016/j.commatsci.2015.09.032
  18. A. Kafy, A. Akther, Md. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, Sens. Actuators A, 247: 221 (2016); https://doi.org/10.1016/j.sna.2016.05.045
  19. V. Lapshuda, V. Koval, V. Barbash, M. Dusheiko, O. Yashchenko, and S. Malyuta, Proc. of Symp. ‘2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)’ (October 10–14, 2022) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute), p. 208; https://doi.org/10.1109/ELNANO54667.2022.9927092
  20. V. Barbash and O. Yaschenko, Novel. Nanomaterials (Ed. K. Krishnamoorthy) (London, UK: IntechOpen: 2021); https://doi.org/10.5772/intechopen.94272
  21. V. A. Barbash, O. V. Yashchenko, A. S. Gondovska, and I. M. Deykun, Appl. Nanosci., 12, No. 4: 835 (2022); https://doi.org/10.1007/s13204-021-01749-z
  22. V. Koval, V. Barbash, M. Dusheyko, V. Lapshuda, O. Yashchenko, and A. Naidonov, Proc. of Symp. ‘2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP)’ (November 9–13, 2020) (Sumy: SumDU), p. 1; https://doi.org/10.1109/NAP51885.2021.9568610
  23. A. Naidonov, V. Koval, V. Barbash, M. Dusheiko, O. Yashchenko, and O. Yakymenko, Proc. of Symp. ‘2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO)’ (October 10–14, 2022) (Kyiv: Igor Sikorsky Kyiv Polytechnic Institute), p. 292; https://doi.org/10.1109/ELNANO54667.2022.9927070
  24. V. A. Barbash, Î. V. Yashchenko, O. S. Yakymenko, R. M. Zakharko, and V. D. Myshak, Cellulose. 29, No. 18: 8305 (2022); https://doi.org/10.1007/s10570-022-04773-6
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement