Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

Andrie Harmaji, Novita Dwi Saputri, and Bambang Sunendar
Chitosan-Modified Alumina–Zirconia–Carbonate Apatite Nanoparticles-Filled Dental Restorative Composite Materials: Characterization and Mechanical Properties.
817–828 (2023)

PACS numbers: 62.20.Qp, 62.23.Pq, 68.37.Hk, 81.07.Pr, 83.80.Ab, 87.85.jj, 87.85.Rs

In the field of restorative dentistry, composite resin is quickly overtaking other materials in terms of usage. It resolves the issue of the toxic nature brought on by the amalgams’ mercury content. The mechanical properties of resin-based dental restorative composites can be enhanced with the addition of filler material. This study examines the effects of chitosan addition to dental composites with alumina, zirconia, and carbonate apatite nanoparticles on their characterization and hardness. The composite for direct restoration is prepared by mixing UDMA–TEGDMA–DMAEMA–HEMA as the matrix and alumina–zirconia–carbonate apatite as the filler in the presence of chitosan as a coupling agent. The weight ratio of filler to matrix used is 70:30. The effects of various concentrations of chitosan are varied at 2%, 4%, and 6%. Samples are prepared by a synthetizing process to obtain alumina–zirconia–carbonate apatite nanoparticles. The diffractogram from XRD shows the formation of t-ZrO2 and dahllite. SEM images reveals that the particle sizes of each sample with chitosan at 2%, 4%, and 6% are of 87.5 nm, 112.5 nm, and 150 nm, respectively. The hardness values of each sample with the same chitosan concentration are of 51.3 VHN, 28.24 VHN, and 25.48 VHN, respectively. Dental composites with less chitosan concentration promote a smaller size of alumina–zirconia–carbonate apatite nanoparticles and higher mechanical properties in dental restorative composites.

Key words: chitosan, alumina, zirconia, carbonate apatite, dental restorative composite.

https://doi.org/

References
  1. M. Rathee and A. Sapra, Dental Caries (Treasure Island, FL: StatPearls Publishing LLC: 2023); https://www.ncbi.nlm.nih.gov/books/NBK551699/
  2. E. A. Abou Neel, A. Aljabo, A. Strange, S. Ibrahim, M. Coathup, A. M. Young, L. Bozec, and V. Mudera, International Journal of Nanomedicine, 11: 4743 (2016); https://doi.org/10.2147/IJN.S107624
  3. N. J. M. Opdam, R. Frankenberger, and P. Magne, Oper Dent, 41: S27 (2016); https://doi.org/10.2341/15-126-LIT
  4. H. V. Worthington, S. Khangura, K. Seal, M. Mierzwinski-Urban, A. Veitz-Keenan, P. Sahrmann, P. R. Schmidlin, D. Davis, Z. Iheozor-Ejiofor, and M. G. Rasines Alcaraz, Cochrane Database of Systematic Reviews, 8 (2021); https://doi.org/10.1002/14651858.CD005620.PUB3/INFORMATION/EN
  5. K. Cho, G. Rajan, P. Farrar, L. Prentice, and B. G. Prusty, Composites Part B: Engineering, 230: 109495 (2022); https://doi.org/10.1016/J.COMPOSITESB.2021.109495
  6. P. Mourouzis, E. A. Koulaouzidou, G. Palaghias, and M. Helvatjoglu-Antoniades, Journal of Applied Biomaterials & Functional Materials, 13, No. 3: 259 (2015); https://doi.org/10.5301/jabfm.5000228
  7. Y. Faza, A. Harmaji, V. Takarini, Z. Hasratiningsih, and A. Cahyanto, Key Engineering Materials, 829: 182 (2019); https://doi.org/10.4028/www.scientific.net/KEM.829.182
  8. B. Sunendar, A. Fathina, A. Harmaji, D. F. Mardhian, L. Asri, and H. B. Widodo, AIP Conference Proceedings (2017), p. 1887; https://doi.org/10.1063/1.5003503
  9. E. Febrina, A. Evelyna, A. Harmaji, and B. Sunendar, Dental Journal, 56, No. 1: 30 (2023); https://doi.org/10.20473/j.djmkg.v56.i1.p30-35
  10. J. C. Souza, J. B. Silva, A. Aladim, O. Carvalho, R. M. Nascimento, F. S. Silva, A. E. Martinelli, and B. Henriques, The Open Dentistry Journal, 10: 58 (2016); https://doi.org/10.2174/1874210601610010058
  11. G. Guo, Y. Fan, J. F. Zhang, J. L. Hagan, and X. Xu, Dental Materials: Official Publication of the Academy of Dental Materials, 28, No. 4: 360 (2012); https://doi.org/10.1016/j.dental.2011.11.006
  12. M. N. Zakaria, A. Cahyanto, and A. El-Ghannam, Key Engineering Materials, 720: 147 (2017); https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.720.147
  13. Y. D. Rakhmatia, Y. Ayukawa, A. Furuhashi, and K. Koyano, Materials, 11, No. 7: 1201 (2018); https://doi.org/10.3390/ma11071201
  14. A. Yumeisa, L. Damayanti, T. Sumarsongko, A. Harmaji, and A. Cahyanto, Key Engineering Materials, 829: 145 (2019); https://doi.org/10.4028/www.scientific.net/KEM.829.145
  15. F. Erfin, R. Rikmasari, L. Damayanti, A. Harmaji, and A. Cahyanto, Key Engineering Materials, 829: 138 (2019); https://doi.org/10.4028/www.scientific.net/KEM.829.138
  16. W. Awalia, T. Sumarsongko, R. Rikmasari, A. Harmaji, and A. Cahyanto, Key Engineering Materials, 829: 131 (2019); https://doi.org/10.4028/www.scientific.net/KEM.829.131
  17. F. Kern, H. Reveron, J. Chevalier, and R. Gadow, Journal of the Mechanical Behavior of Biomedical Materials, 90: 395 (2019); https://doi.org/10.1016/J.JMBBM.2018.11.001
  18. H. Tanaka, T. Maeda, H. Narikiyo, and T. Morimoto, Journal of Asian Ceramic Societies, 7, No. 4: 460 (2019); https://doi.org/10.1080/21870764.2019.1665767
  19. G. Xu, I. A. Aksay, and J. T. Groves, Journal of the American Chemical Society, 123, No. 10: 2196 (2001); https://doi.org/10.1021/JA002537I
  20. H. A. Siddiqui, K. L. Pickering, and M. R. Mucalo, Materials (Basel, Switzerland), 11, No. 10: 1813 (2018); https://doi.org/10.3390/ma11101813
  21. S. Balhuc, R. Campian, A. Labunet, M. Negucioiu, S. Buduru, and A. Kui, Crystals, 11, No. 6: 674 (2021); https://doi.org/10.3390/cryst11060674
  22. P. Y?lmaz Atal?, B. Do?u Kaya, A. Manav ?zen, B. Tar??n, A. A. ?enol, E. T?ter Bayraktar, and B. Korkut, Polymers, 14, No. 22: 4987 (2022); https://doi.org/10.3390/polym14224987
  23. M. del P. Guti?rrez-Salazar, and J. Reyes-Gasga, Materials Research, 6, No. 3: 367 (2003); https://doi.org/10.1590/S1516-14392003000300011
  24. S. S. Mirsasaani, M. Hemati, T. Tavasoli, E. S. Dehkord, G. T. Yazdi, and D. A. Poshtiri, Nanobiomaterials in Clinical Dentistry, Ch. 2: 17 (2013); https://doi.org/10.1016/B978-1-4557-3127-5.00002-7
  25. M. Par, D. Marovic, T. Attin, Z. Tarle, and T. T. Taub?ck, Scientific Reports, 10, No. 1: 1 (2020); https://doi.org/10.1038/s41598-020-67641-y
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement