Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

Majeed Ali Habeeb and Zanab Ibrahim Zike
Morphological and Optical Properties of Polyvinyl Alcohol–Tungsten Carbide Nanostructures for Optoelectronic Nanodevices
791–802 (2023)

PACS numbers: 78.20.Ci, 78.67.Sc, 81.05.Qk, 81.07.Pr, 81.40.Tv, 82.35.Np, 85.60.-q

The PVA/WC nanocomposites are formed by using a solution casting method with varying weight percentages of WC nanoparticles: 0, 1, 2, and 3 wt.%. The optical properties of films are studied by means of the optical microscope. As revealed with optical microscope, the tungsten carbide nanoparticles form a continuous network inside the polymer (polyvinyl alcohol); the nanoparticles linked in this network include routes for charge carriers to transport through the nanocomposite, causing a shift in the material properties. The findings expose that, as the concentration of WC nanoparticles rises, the absorption coefficient, extinction coefficient, refractive index, real and imaginary dielectric constants, optical conductivity are increasing. The transmittance drops as the concentration of WC nanoparticles increases. The optical energy gap for PVA is reduced from 4.4 eV for pure PVA to 3.8 eV and is reduced from 3.7 eV to 3.1 eV for allowed and forbidden indirect transition, respectively, when the WC-nanoparticles’ concentration reached 3 wt.%. This behaviour makes it suitable for a variety of optical applications.

Key words: nanocomposites, tungsten carbide nanoparticles, optical characteristics.

https://doi.org/

References
  1. B. S. Mudigoudra, S. P. Masti, and R. B. Chou, Research Journal of Recent Sciences, 1: 83 (2012).
  2. M. A. Habeeb, European Journal of Scientific Research, 57, No. 3: 478 (2011).
  3. M. Ghanipour and D. Dorranian, J. Nanomater., 2013: 10 (2013).
  4. S. M. Mahdi and M. A. Habeeb, Digest Journal of Nanomaterials and Biostructures, 17, No. 3: 941 (2022); https://doi.org/10.15251/DJNB.2022.173.941
  5. M. S. El-Eskandarany and M. Sherif El-Eskandarany, J. Alloys Compd., 391: 228 (2005).
  6. A. H. Hadi and M. A. Habeeb, Journal of Physics: Conference Series, 1973, No. 1: 012063 (2021); doi:10.1088/1742-6596/1973/1/012063
  7. Nhiem Tran, Aparna Mir, Dhriti Mallik, Arvind Sinha, Suprabha Nayar, and Thomas J. Webster, Int. J. Nanomedicine, 5: 277 (2010); https://doi.org/10.2147/IJN.S9220
  8. M. A. Habeeb, Journal of Engineering and Applied Sciences, 9, No. 4: 102 (2014); doi:10.36478/jeasci.2014.102.108
  9. X.-H. Gao, C.-B. Wang, and Zh.-M. Guo, Q.-F. Geng, W. Theiss, and G. Liu, Optical Materials, 58: 219 (2016); https://doi.org/10.1016/j.optmat.2016.05.037
  10. S. M. Mahdi and M. A. Habeeb, AIMS Materials Science, 10, No. 2: 288 (2023); doi:10.3934/matersci.2023015
  11. M. A. Habeeb and W. K. Kadhim, Journal of Engineering and Applied Sciences, 9, No. 4: 109 (2014); doi:10.36478/jeasci.2014.109.113
  12. T. S. Soliman and S. A. Vshivkov, J. Non-Cryst. Solids, 519: 119452 (2019).
  13. S. M. Mahdi and M. A. Habeeb, Physics and Chemistry of Solid State, 23, No. 4: 785 (2022); doi:10.15330/pcss.23.4.785-792
  14. T. Siddaiah, P. Ojha, N. O. Kumar, and Ch. Ramu, Mater. Res., 21, No. 5: e20170987 (2018); https://doi.org/10.1590/1980-5373-mr-2017-0987
  15. M. A. Habeeb and Z. S. Jaber, East European Journal of Physics, 4: 176 (2022); doi:10.26565/2312-4334-2022-4-18
  16. A. H. Hadi and Majeed Ali Habeeb, Journal of Mechanical Engineering Research and Developments, 44, No. 3: 265 (2021); https://jmerd.net/03-2021-265-274
  17. S. Kramadhati and K. Thyagarajan, Int. Journal of Engineering Research and Development, 6, No. 8: 15 (2013); www.ijerd.com
  18. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63: 719 (2020); https://dx.doi.org/10.21608/ejchem.2019.14847.1900
  19. A. R. Farhadizadeh and H. Ghomi, Materials Research Express, 7, No. 3: 36502 (2020).
  20. A. A. Mohammed and M. A. Habeeb, Silicon, 15: 5163 (2023); https://doi.org/10.1007/s12633-023-02426-2
  21. M. Chirita, I. Grozescu, L. Taubert, H. Radulescu, and E. Princz, Chem. Bull., 54, No. 68: 1 (2009).
  22. S. M. Mahdi and M. A. Habeeb, Optical and Quantum Electronics, 54, Iss. 12: 854 (2022); https://doi.org/10.1007/s11082-022-04267-6
  23. N. Hayder, M. A. Habeeb, and A. Hashim, Egyptian Journal of Chemistry, 63: 577 (2020); doi:10.21608/ejchem.2019.14646.1887
  24. O. E. Gouda, S. F. Mahmoud, A. A. El-Gendy, and A. S. Haiba, Indonesian Journal of Electrical Engineering, 12, No. 12: 7987 (2014).?
  25. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 709 (2020); https://dx.doi.org/10.21608/ejchem.2019.13333.1832
  26. A. Hashim, M. A. Habeeb, and Q. M. Jebur, Egyptian Journal of Chemistry, 63: 735 (2020); https://dx.doi.org/10.21608/ejchem.2019.14849.1901
  27. S. Choudhary, J. Mater. Sci., Mater. Electron, 29: 10517 (2018).
  28. M. A. Habeeb and W. H. Rahdi, Optical and Quantum Electronics, 55, Iss. 4: 334 (2023); https://doi.org/10.1007/s11082-023-04639-6
  29. M. A. Habeeb and W.S. Mahdi, International Journal of Emerging Trends in Engineering Research, 7, No. 9: 247 (2019); doi:10.30534/ijeter/2019/06792019
  30. S. Ahmad and S. A. Agnihotry, Bull. Mater. Sci., 30, No. 1: 31 (2007).
  31. M. A. Habeeb and R. S. Abdul Hamza, Journal of Bionanoscience, 12, No. 3: 328 (2018); https://doi.org/10.1166/jbns.2018.1535
  32. Mojtaba Haghighi-Yazdi and Pearl Lee-Sullivan, Journal of Applied Polymer Science, 132, Iss. 3: 41316 (2015); https://doi.org/10.1002/app.41316
  33. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 697 (2020); https://dx.doi.org/10.21608/ejchem.2019.12439.1774
  34. N. K. Al-Sharifi and M. A. Habeeb, Silicon, 15: 4979 (2023); https://doi.org/10.1007/s12633-023-02418-2
  35. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63, No. 2: 611 (2020); https://dx.doi.org/10.21608/ejchem.2019.10197.1669
  36. R. N. Bhagat and V. S. Sangawar, Int. J. Sci. Res. (IJSR), 6: 361 (2017).
  37. M. H. Dwech, M. A. Habeeb, and A. H. Mohammed, Ukr. J. Phys., 67, No. 10: 757 (2022); https://doi.org/10.15407/ujpe67.10.757
  38. S. M. Mahdi and M. A. Habeeb, Polymer Bulletin, 80:12741 (2023); https://doi.org/10.1007/s00289-023-04676-x
  39. R. Dalven and R. Gill, J. Appl. Phys., 38, No. 2: 753 (1967); doi:10.1063/1.1709406
  40. M. A. Habeeb and R. S. A. Hamza, Indonesian Journal of Electrical Engineering and Informatics, 6, No. 4: 428 (2018); doi:10.11591/ijeei.v6i1.511
  41. M. S. Aziz and H. M. El-Mallah, International Journal of Polymeric Materials, 54, No. 12: 1157 (2005).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement