Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

V. Z. VOYNASH, A. O. PEREKOS, T. G. KABANTSEV, N. V. DANKO, I. L. VINNYCHENKO, and O. D. RUD’
Polyol Synthesis of Nanoparticles for Magnetic Nanofluids
757–768 (2023)

PACS numbers: 47.63.mh, 47.65.Cb, 75.50.Mm, 81.07.-b, 81.20.Fw, 83.80.Gv, 87.85.Qr

Progress in the application of magnetic nanofluids depends largely on the size, construction, structure and physicochemical properties of the nanoparticles used for their preparation. To obtain nanoparticles in this work, the method of polyol synthesis is used. As shown, this method allows obtaining nanoparticles of solid solutions of manganese ferrite and zinc ferrite with a certain composition within the size range of 5–10 nm. As revealed, the nanoparticles of manganese–zinc ferrites synthesized by the polyol method allow changing the protective layer of the modifier on their surface that makes it possible to form stable colloidal systems of these nanoparticles in different liquids. Synthesized nanopowders of manganese–zinc ferrite nanoparticles can be recommended for use in medicine and biology.

Key words: polyol synthesis, magnetic nanoparticles, magnetic nanofluids, x-ray analysis, manganese–zinc ferrites.

https://doi.org/

References
  1. E. E. Carpenter, Journal of Magnetism and Magnetic Materials, 225: Iss. 1–2: 17 (2001); https://doi.org/10.1016/S0304-8853(00)01222-1
  2. R. Hergt, R. Hiergeist, I. Hilger, W. A. Kaiser, Y. Lapatnikov, S. Margel, U. Richter, Journal of Magnetism and Magnetic Materials, 270, Iss. 3: 345 (2004); https://doi.org/10.1016/j.jmmm.2003.09.001
  3. M. C. Bautista, O. Bomati-Miguel, X. Zhao, M. P. Morales, T. Gonz?lez-Carreno, R. Perez de Alejo, J. Ruiz-Cabello, and S. Veintemillas-Verdaguer, Nanotechnology, 15, Iss. 4: 154 (2004); https://doi.org/10.1088/0957-4484/15/4/008
  4. W. C. Elmore, Physical Review, 54: 309 (1938); https://doi.org/10.1103/PhysRev.54.309
  5. D. J. Craik and P. M. Griffiths, British Journal of Applied Physics, 9: 279 (1958); https://doi.org/10.1088/0508-3443/9/7/306
  6. J. R. Garrood, Proceedings of the Physical Society, 79: 1252 (1962); https://doi.org/10.1088/0370-1328/79/6/320
  7. R. Massart, IEEE Transactiond on magnetics, 17, No. 2: 1247 (1981); https://doi.org/10.1109/TMAG.1981.1061188
  8. P. P. Gorbyk and V. V. Turov, Nanomaterialy i Nanokompozyty v Medytsyni, Biologii, Ehkologii (Kyiv: Naukova Dumka: 2011) (in Ukrainian).
  9. P. P. Gorbyk, Nanosistemi, Nanomateriali, Nanotehnologii, 11, Iss. 2: 323 (2013) (in Ukrainian); https://www.imp.kiev.ua/nanosys/en/articles/2013/2/nano_vol11_iss2_p0323p0436_2013_abstract.html
  10. P. P. Gorbyk, L. B. Lerman, A. L. Petranovska, and S. P. Turanska, Advances in Semiconductor Research: Physics of Nanosystem, Spintronics and Technological Applications (New York: 2014).
  11. I. V. Uvarova, P. P. Gorbyk, S. V. Gorobets, O. A. Ivashchenko, and N. V. Ulyachenko, Nanomaterialy Medychnogo Pryznachennya (Kyiv: Naukova Dumka: 2014) (in Ukrainian).
  12. M. V. Abramov, S. P. Turanska, and P. P. Horbyk, Metallofizika i Noveishie Tekhnologii, 40, No. 10: 1283 (2018) (in Ukrainian); https://doi.org/10.15407/mfint.40.10.1283
  13. M. V. Abramov, S. P. Turanska, and P. P. Horbyk, Metallofizika i Noveishie Tekhnologii, 40, No. 4: 423 (2018) (in Ukrainian); https://doi.org/10.15407/mfint.40.04.0423
  14. R. Singh and G. Thirupathi, Manganese–Zinc Spinel Ferrite Nanoparticles and Ferrofluids, Magnetic Spinels (IntechOpen: 2017), p. 139–159.
  15. Bikash Badaik, Study on Structural and Magnetic Properties of Mn(1?x)ZnxFe2O4 Prepared by Solid-State Reaction Method (BTech Thesis) (Rourkela, India: National Institute of Technology: 2014–2015); http://ethesis.nitrkl.ac.in/7318/1/Study_Badaik_2015.pdf
  16. R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, and S. Sendhilnathan, Journal of Magnetism and Magnetic Materials, 288: 470 (2005); https://doi.org/10.1016/j.jmmm.2004.09.138
  17. Salma Irfan, M. Ajaz-un-Nabi, Yasir Jamil, and Nasir Amin, IOP Conf. Series: Materials Science and Engineering, 60: 012048 (2014); https://doi.org/10.1088/1757-899X/60/1/012048
  18. P. Mathur, A. Thakur, and M. Singh, Modern Physics Letters B, 21, No. 21: 1425 (2007); https://doi.org/10.1142/S0217984907013651
  19. P. Mathur, A. Thakur, and M. Singh, Zeitschrift f?r Physikalische Chemie, 221: 887 (2007); https://doi.org/10.1524/zpch.2007.221.7.887
  20. Kinnari Parek, Ramesh V. Upadhyay, Lyubov Belova, and K. V. Rao, Nanotechnology, 17: 5970 (2006); https://doi.org/10.1088/0957-4484/17/24/011
  21. F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, Solid State Ionics, 32/33: 198 (1989); https://doi.org/10.1016/0167-2738(89)90222-1
  22. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, and R. N. Muller, Chemical Review, 108: 2064 (2008); https://doi.org/10.1021/cr068445e
  23. V. A. Balanov, A. P. Kiseleva, E. F. Krivoshapkina, E. Ŕ. Kashtanov, R. R. Gimaev, V. I. Zverev, and P. V. Krivoshapkin, J. Sol–Gel Sci. Technol., 95: 795 (2020); https://doi.org/10.1007/s10971-020-05237-8
  24. Darko Makovec and Miha Drofenik, Journal of American Ceramic Society, 82: 1113 (1999); https://doi.org/10.1111/j.1151-2916.1999.tb01884.x
  25. G. Kogias and V. T. Zaspalis, Ceramics International, 42, Iss. 6: 7639 (2016); http://dx.doi.org/10.1016/j.ceramint.2016.01.176
  26. Li Lezhong, Lan Zhongwen, Yu Zhong, Sun Ke, and Ji Haining, Journal of Magnetism and Magnetic Materials, 318: 39 (2007); https://doi.org/10.1016/j.jmmm.2007.04.020
  27. Yao Ying, Yuzhao Gong, Dong Liu, Wangchang Li, Jing Yu, Liqiang Jiang, and Henglei Che, J. Supercond. Nov. Magn., 30: 2129 (2017): doi:10.1007/s10948-017-4002-z
  28. Ming-Ru Syue, Fu-Jin Wei, Chan-Shin Chou, and Chao-Ming Fu, Journal of Applied Physics, 109: 007A324 (2011); https://doi.org/10.1063/1.3560880
  29. V. Jagdeesha Angadi, Leema Choudhury, K. Sadhana, Hsiang-Lin Liu, R. Sandhya, Shidaling Matteppanavar, B. Rudraswamy, Vinayak Pattar, R. V. Anavekar, and K. Praveena, Journal of Magnetism and Magnetic Materials, 424: 1 (2017); https://doi.org/10.1016/j.jmmm.2016.10.050
  30. M. A. Gabal, R. S. Al-luhaibi, and Y. M. Al Angari, Journal of Hazardous Materials, 246–247: 227 (2013); https://doi.org/10.1016/j.jhazmat.2012.12.026
  31. D. Caruntu, G. Caruntu, Yu. Chen, Ch. J. O’Connor, G. Goloverda, and V. L. Kolesnichenko, Chemistry of Materials, 16: 5527 (2004); https://doi.org/10.1021/cm0487977
  32. D. Caruntu, Ya. Remond, N. H. Chou, M.-J. Jun, G. Caruntu, J. He, G. Goloverda, Ch. J. O’Connor, and V. L. Kolesnichenko, Inorganic Chemistry, 41: 6137 (2002); https://doi.org/10.1021/ic025664j
  33. Ŕ. I. Gusev, Nŕnomaterialy, Nanostruktury, Nanotekhnologii (Moskva: Fizmatlit: 2005) (in Russian).
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement