Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

V. A. PROKOPENKO, S. V. NETREBA, O. A. TSYGANOVICH, A. V. PANKO, and I. O. AGEYENKO
Colloid-Chemical Mechanisms of the Formation of Ultra- and Nanosize Iron Oxide/Hydroxide Phases Obtained in the Fe0(St3)–H2O–O2 System and Their Electrokinetic Properties. I. Preparation and Formation Mechanisms of Ultradisperse Phases of [Fe(II)–Fe(III)] LDH, Magnetite, Cobalt-Ferrous Ferrite, Lepidocrocite, and Goethite in the Fe0(St3)–H2O–O2 System
739–756 (2023)

PACS numbers: 64.70.Nd, 68.55.Nq, 75.50.Gg, 75.50.Tt, 81.07.-b, 81.16.Be, 82.70.Dd

In our previous works, the investigation of processes of obtaining and identifying dispersed phases formed in the Fe0(St3)–H2O–O2 system is carried out. At the same time, the analysis of the obtained scientific materials indicates the need for a more thorough study of these processes, taking into account both the analytical conclusions obtained previously and the new data collected during the implementation of this study. The results of this research are summarized in three logically connected articles. The first of them is presented here. This article summarizes the kinetic regularities of formation of the phases of ultradispersed iron–oxygen-containing compounds (UIOCs) in the Fe0(St3)–H2O–O2 system, depending on the physicochemical conditions of the process, and the mechanisms of their formation. It analyses the contribution to the phase formation of various factors, including a steel (St3) disk as an element of an experimental device modelling iron oxidation/reduction processes, electrode processes on its surface, the access of oxygen and carbon dioxide of the air, nanochemical transformations on the surface of the steel disc (SD), and the cationic and anionic compositions of the experimental solution. The results show that the structural elements of steel can contribute to nanochemical transformations, and they can become a source of carbon dioxide and ferrous hydroxide, which participate in the formation of primary UIOCs on the SD surface. The oxidation and transformation of iron layered double hydroxides (LDHs) ([Fe(II)–Fe(III)] LDHs) by the contact-recrystallization mechanism, and the dissolution–reprecipitation or topotactic transformation mechanisms are the main ways of formation of the final ultradispersed and nanoscale phases of magnetite, cobalt-ferrous ferrite, lepidocrocite, and goethite. The article highlights the role of anionic composition in the processes of formation of two [Fe(II)–Fe(III)] LDHs’ types: GRI(ÑÎ32-) and GRII(SO42-). The determining role of electrode processes in the formation of UIOCs is shown. Based on the analysis, the physicochemical conditions for obtaining ultradispersed and nanosize particles of magnetite, cobalt-ferrous ferrite, and lepidocrocite are determined, and the colloidal-chemical properties of the obtained particles are investigated. The methods of x-ray diffraction analysis (XRD), x-ray diffraction in situ (XRD in situ), scanning electron microscopy (SEM), and M?ssbauer spectroscopy are used.

Key words: ultradispersed iron–oxygen-containing compounds (UIOCs), iron(III)-hydroxide oxides, carbon dioxide, iron layered double hydroxides, GRI(CO32-), GRII(SO42-), magnetite, cobalt-ferrous ferrite, lepidocrocite, goethite.

https://doi.org/

References
  1. Kolloidno-Khimicheskie Osnovy Nanonauki [Colloidal-Chemical Foundations of Nanoscience] (Eds. A. P. Shpak and Z. R. Ul’berg) (Kiev: Akademperiodika: 2005) (in Russian).
  2. M. D. Glinchuk and A. V. Ragulya, Nanoferroiki [Nanoferroics] (Kiev: Naukova Dumka: 2010) (in Russian).
  3. U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization (Weinheim: WILEY-VCH Verlag: 2000); https://doi.org/10.1002/9783527613229
  4. I. S. Chekman, Visn. NAN Ukrayiny, No. 7: 21 (2012) (in Ukrainian).
  5. P. P. Gorbyk, Poverkhnost’, 7, No. 22: 297 (2015) (in Russian).
  6. R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Weinheim: Wiley-VCH: 2003).
  7. P. S. Haddad, T. M. Martins, L. D’Souza-Li, Li M. Li, K. Metze, R. L. Adam, M. Knobel, and D. Zanchet, Mat. Sci. Eng. C, 28: 489 (2008); https://doi.org/10.1016/j.msec.2007.04.014
  8. A. T. Khalil, M. Ovais, I. Ullah, M. Ali, Z. K. Shinwari, and M. Maaza, Green. Chem. Lett. Rev., 10, No. 4: 186 (2017); https://doi.org/10.1080/17518253.2017.1339831
  9. S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. Lewis Oscar, and A. Pugazhendhi, J. Photochem. Photobiol. B, 192: 74 (2019); https://doi.org/10.1016/j.jphotobiol.2018.12.025
  10. S. Pakapongpan, Y. Poo-arporn, A. Tuantranont, and R. P. Poo-arporn, Talanta, 241: 123184 (2022); https://doi.org/10.1016/j.talanta.2021.123184
  11. V. A. Prokopenko, Obrabotka Dispersnykh Materialov i Sred: Sbornik Nauchnykh Rabot [Processing of Dispersed Materials and Media: Coll. of Sci. Papers] (Odessa: RPA Votum: 1999), Iss. 9, p. 170 (in Russian).
  12. V. A. Prokopenko, Proc. of ‘4th International Conference on Carpathian Euroregion Ecology CERECO’2003’ (Apr. 28–30, 2003, Misholc-Tapolca), p. 191.
  13. O. M. Lavrynenko, V. Yu. Starchenko, S. V. Netreba, and V. A. Prokopenko, Him. Fiz. Tehnol. Poverhni, 2, No. 4: 393 (2011).
  14. O. M. Lavrynenko, S. V. Netreba, V. A. Prokopenko, and Ya. D. Korol, Him. Fiz. Tehnol. Poverhni, 2, No. 1: 93 (2011).
  15. O. M. Lavrynenko, Ya. D. Korol, S. V. Netreba, and V. A. Prokopenko, Him. Fiz. Tehnol. Poverhni, 1, No. 3: 338 (2010).
  16. E. N. Lavrynenko and S. V. Netreba, Tr. Odess. Politekh. Univ., 2, No. 30: 250 (2008) (in Russian).
  17. O. N. Razumov, V. A. Prokopenko, E. N. Lavrynenko, S. V. Mamunya, and A. P. Skoblik, Nanosistemi, Nanomateriali, Nanotehnologii, 5, No. 1: 217 (2007) (in Russian).
  18. O. M. Lavrynenko, V. I. Kovalchuk, S. V. Netreba, and Z. R. Ulberg, Nano Studies, Iss. 7: 295 (2013).
  19. G. A. Dorofeev, A. N. Streletskii, I. V. Povstugar, A. V. Protasov, and E. P. Elsukov, Colloid J., 74, No. 6: 675 (2012) (in Russian).
  20. N. P. Zhuk, Kurs Korrozii i Zashchity Metallov [Corrosion and Metal Protection Course] (Moskva: Metallurgiya: 1968) (in Russian).
  21. V. V. Zozulya, E. N. Lavrynenko, V. A. Prokopenko, and N. V. Pertsev, Ukrainskiy Khimicheskiy Zhurnal, 66, No. 7: 48 (2000) (in Russian).
  22. O. M. Lavrynenko, Oderzhannya Kompozytsiynykh Strukturovanykh System na Osnovi Ferum Oksygenvmisnykh Mineraliv, Yikh Struktura ta Vlastyvosti [Preparation of Composite Structured Systems Based on Ferrum Oxygen-Containing Minerals, Their Structure and Properties] (Thesis of Disser. for Dr. Chem. Sci.) (Kyiv: F. D. Ovcharenko Institute of Biocolloid Chemistry, N.A.S.U.: 2013) (in Ukrainian).
  23. H. Tamura, Corros. Sci., 50, No. 7: 1872 (2008); https://doi.org/10.1016/j.corsci.2008.03.008
  24. V. A. Prokopenko, E. N. Lavrynenko, S. V. Mamunya, and S. N. Budankova, Nanostrukturne Materialoznavstvo, No. 1: 59 (2008) (in Russian).
  25. V. A. Prokopenko and S. V. Netreba, Proc. of 5th Intern. Conf. of Assoc. ‘Carpathian Euroregion’ (CERECO—2014) (March 26–28, 2014) (Uzhorod: Lira: 2014), p. 170 (in Russian).
  26. T. Sugimoto and E. Matijevic, J. Coll. Interf. Sci., 74, No. 1: 227 (1980). https://doi.org/10.1016/0021-9797(80)90187-3
  27. S. A. Kahani and M. Jafari, J. Magn. Magn. Mater., 321, No. 13: 1951 (2009); https://doi.org/10.1016/j.jmmm.2008.12.026
  28. Y. Zhang, L. Charlet, and P. W. Schindler, Colloids and Surfaces, 63, Nos. 3–4: 259 (1992); https://doi.org/10.1016/0166-6622(92)80247-Y
  29. J.-H. Jang, R. Mathur, L. J. Liermann, S. Ruebush, and S. L. Brantley, Chem. Geol., 250, Nos. 1–4: 40 (2008). https://doi.org/10.1016/j.chemgeo.2008.02.002
  30. L. I. Antropov, Teoretychna Ehlektrokhimiya [Theoretical Electrochemistry] (Kyiv: Lybid’: 1993) (Ukrainian translation).
  31. Yu. Yu. Lur’ye, Spravochnik po Analiticheskoy Khimii [Handbook of Analytical Chemistry] (Moskva: Khimiya: 1979) (in Russian).
  32. S. Pineau, R. Sabot, L. Quillet, M. Jeannin, Ch. Caplat, I. Dupont-Morral, and Ph. Refait, Corros. Sci., 50, No. 4: 1099 (2008). https://doi.org/10.1016/j.corsci.2007.11.029
  33. O. M. Lavrynenko, S. V. Netreba, and P. O. Kosorukov, Nano Studies, Iss. 6: 93 (2012).
  34. Gipergennyye Okisly Zheleza v Geologicheskikh Protsessakh [Hypergene Iron Oxides in Geological Processes] (Eds. N. V. Petrovskaya) (Kiev: Naukova Dumka: 1975) (in Russian).
  35. S. Suzuki, K. Shinoda, M. Sato, S. Fujimoto, M. Yamashita, H. Konishi, T. Doi, T. Kamimura, K. Inoue, and Y. Waseda, Corros. Sci., 50, No. 6: 1761 (2008); https://doi.org/10.1016/j.corsci.2008.02.022
  36. S. H. Drissi, Ph. Refait, M. Abdelmoula, and J. M. R. G?nin, Corros. Sci., 37, No. 12: 2025 (1995); https://doi.org/10.1016/0010-938X(95)00096-3
  37. A. A. Olowe and J. M. R. G?nin, Corros. Sci., 32, No. 9: 965 (1991); https://doi.org/10.1016/0010-938X(91)90016-I
  38. A. N. Astanina and A. P. Rudenko, Zhurn. Fiz. Khimii, 45, No. 2: 345 (1971) (in Russian).
  39. U. Schwertmann and H. Fechter, Clay Miner., 29, No. 1: 87 (1994); https://doi.org/10.1180/claymin.1994.029.1.10
  40. N. Boucherit, A. Hugot-Le Goff, and S. Joiret, Corros. Sci., 32, Nos. 5–6: 497 (1991); https://doi.org/10.1016/0010-938X(91)90103-V
  41. M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, and H. Uchida, Corros. Sci., 47, No. 10: 2492 (2005); https://doi.org/10.1016/j.corsci.2004.10.021
  42. S. Bhowmick, S. Chakraborty, P. Mondal, W. V. Renterghem, S. V. Berghe, G. Roman-Ross, D. Chatterjee, and M. Iglesias, Chem. Eng. J., 243: 14 (2014); https://doi.org/10.1016/j.cej.2013.12.049
  43. G. B. Sergeyev, Nanokhimiya [Nanochemistry] (Moskva: MSU PH: 2003) (in Russian).
  44. Kratkaya Khimicheskaya Ehntsiklopediya. Tom 2 [Brief Chemical Encyclopedia. Volume 2] (Ed. I. L. Knunyants) (Moskva: Sovetskaya Ehntsiklopediya: 1963) (in Russian).
  45. C. Ruby, M. Usman, S. Naille, K. Hanna, C. Carteret, M. Mullet, M. Fran?ois, and M. Abdelmoula, Appl. Clay Sci., 48, Nos. 1–2: 195 (2010); https://doi.org/10.1016/j.clay.2009.11.017
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement