Download the full version of the article (in PDF format)
O. K. SHUAIBOV, O. Y. MINIA, R. V. HRYTSAK, R. M. HOLOMB, and Z. T. HOMOKI
Conditions of Plasma Synthesis of Surface Microstructures in the ‘Air–Silver Sulfide (Ag2S)’ Steam-and-Gas Mixture
721–737 (2023)
PACS numbers: 51.50.+v, 52.80.Mg, 52.80.Tn, 79.60.Jv, 81.15.Gh, 81.16.Be, 82.33.Xj
The characteristics of an overvoltage nanosecond discharge in air between polycrystalline electrodes made of a superionic conductor, silver sulphide (Ag2S), are presented. The voltage and current pulses, the pulse discharge power and the contribution of plasma energy per pulse, and the optical characteristics of the discharge as a function of both air pressure and the parameters of the discharge-excitation system are studied. This made it possible to establish the optimal conditions for sputtering the polycrystalline electrodes and synthesizing the relevant films on a substrate installed near the electrodes’ system. The surface microstructures based on both silver-sulphide sputtered in the discharge and air-molecules’ dissociation products are synthesized. The Raman light-scattering spectra of the surface microstructures synthesized from both the electrodes’ spray products and air-molecules’ decay products in the discharge are studied.
Key words: overvoltage nanosecond discharge, silver sulphide, air, thin films, UV radiation, Ra-man spectroscopy.
Issue DOI: https://doi.org/10.15407/nnn.21.04.721
References
- K. Tominaga, N. Umezu, I. Mori, T. Ushiro, T. Moriga, and I. Nakabayashi, Thin Solid Films., 316, Nos. 1–2: 85 (1998); https://doi.org/10.1016/S0040-6090(98)00394-0
- L. Holland and G. Samuel, Surface Technology, 14, No. 3: 205 (1981); https://doi.org/10.1016/0376-4583(81)90082-0
- Zhubo Liu, A. A. Rogachåv, M. A. Yarmolenko, X. H. Jiang, A. V. Rogachåv, and D. L. Gorbachev, Problemy Fiziki, Matematiki i Tekhniki, 14, Iss. 1: 37 (2013).
- S. I. Sadovnikov, A. A. Rempel’, and A. I. Gusev, JETP Letters, 106: 587 (2017); https://doi.org/10.1134/S002136401721010X
- Å. Ñ. Vorontsova, Yu. V. Kuznetsova, and S. V. Rempel, Phys. Technologies. Innovations: Proceedings of the VII International Youth Scientific Conference (May 18–22, 2020, Yekaterinburg, RF) (Yekaterinburg: UrFU: 2020), p. 339.
- Mahmoud Trad, Alexandre Nomin?, Natalie Tarasenka, Jaafar Ghanbaja, C?dric No?l, Malek Tabbal, and Thierry Belmonte, Front. Chem. Sci. Eng., 13: 1 (2019); https://doi.org/10.1007/s11705-019-1802-7
- Y. Wang, B. M. Luther, F. Pedaci, M. Berrill, F. Brizuela, M. Marconi, M. A. Larotonda, V. N. Shlyaptsev, and J. J. Rocca, IEEE Transactions on Plasma Science, 33, No. 2: 584 (2005); https://doi.org/10.1109/TPS.2005.845278
- A. K. Shuaibov, A. Y. Minya, Z. T. Gomoki, A. A. Malinina, and A. N. Malinin, Surface Engineering and Applied Electrochemistry, 56, No. 4: 510 (2020); https://doi.org/10.3103/S106837552004016X
- O. K. Shuaibov, O. Y. Minya, A. O. Malinina, O. M. Malinin, and I. V. Shevera, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 11: 89 (2021); https://doi.org/10.15407/nnn.19.01.189
- K. Shuaibov and A.O. Malinina, Progress in Physics of Metals, 22, No. 3: 382 (2021); https://doi.org/10.15407/ufm.22.03.382
- O. K. Shuaibov, A. O. Malinina, and O. M. Malinin, Kharakterystyky i Parametry Perenapruzhenoho Nanosekundnoho Rozriadu v Paro-Hazovykh Sumishakh ta Rozrobka Novykh Hazorozriadnykh Lamp [Characteristics and Parameters of Overvoltage Nanosecond Discharge in Vapor–Gas Mixtures and Development of New Gas Discharge Lamps]: Monograph (Uzhhorod: Hoverla: 2021) (in Ukrainian).
- V. F. Tarasenko, Runaway Electrons Preionized Diffuse Discharge (New York: Nova Science Publishers Inc.: 2014).
- D. V. Beloplotov and V. F. Tarasenko, Journal of Physics: Conference Series, 1393: 012004 (2019); https://doi.org/10.1088/1742-6596/1393/1/012004
- G. A. Mesyats, Usp. Fizich. Nauk, 165, No. 6: 601 (1995) (in Russian); https://doi.org/10.1070/PU1995v038n06ABEH000089
- A. Shuaibov, A. Minya, R. Hrytsak, A. Malinina, A. Malinin, Y. Zhiguts, and I. Shevera, Biomedical & Translational Science, 2, No. 1: 1 (2022); https://doi.org/10.33425/2768-4911.1025
- O. K. Shuaibov, O. Y. Minya, R. V. Hrytsak, A. A. Malinina, A. N. Malinin, Yu. Yu. Bilak, and Z. T. Homoki, J. Pharmaceutics and Pharmacology Research, 5, No. 7: 1 (2022); https://doi.org/10.31579/2693-7247/093
- Î. K. Shuaibov, O. Y. Mynia, O. M. Malinin, R. V. Hrytsak, A. O. Malinina, A. I. Pogodin, and Z. T. Homoki, Journal of Nano- and Elecronic Physics, 15, No. 1: 01010 (2023); https://doi.org/10.21272/jnep.15(1).01010
- I. Martina, R. Wiesinger, D. Jembrih-Simburger, and M. Schreiner, e-PS, 9: 1 (2012).
- S. I. Sadovnikov, E. G. Vovkotrub, and A. A. Rempel, Dokl. Phys. Chem., 480, No. 6: 81 (2018); https://doi.org/10.1134/S0012501618060027
- Y. Delgado-Bele?o, M. Cortez-Valadez, C.E. Martinez-Nu?ez, R. Britto Hurtado, R. A. B. Alvarez, O. Rocha-Rocha, H. Arizpe-Ch?vez, A. Perez-Rodr?guez, and M. Flores-Acosta, Chemical Physics, 463: 106 (2015); https://doi.org/10.1016/j.chemphys.2015.10.009
- C. Nims, B.Cron, M.Wetherington, J. Macalady, and J. Cosmidis, Sci. Rep., 9: 7971 (2019); https://doi.org/10.1038/s41598-019-44353-6
- L. Mandrile, I. Cagnasso, L. Berta, A.M. Giovannozzi,M. Petrozziello, F. Pellegrino, A. Asproudi, F. Durbiano, and A. M. Rossi, Food Chemistry, 326: 127009 (2020); https://doi.org/10.1016/j.foodchem.2020.127009
|