Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

O. K. SHUAIBOV, O. Y. MINIA, R. V. HRYTSAK, R. M. HOLOMB, and Z. T. HOMOKI
Conditions of Plasma Synthesis of Surface Microstructures in the ‘Air–Silver Sulfide (Ag2S)’ Steam-and-Gas Mixture
721–737 (2023)

PACS numbers: 51.50.+v, 52.80.Mg, 52.80.Tn, 79.60.Jv, 81.15.Gh, 81.16.Be, 82.33.Xj

The characteristics of an overvoltage nanosecond discharge in air between polycrystalline electrodes made of a superionic conductor, silver sulphide (Ag2S), are presented. The voltage and current pulses, the pulse discharge power and the contribution of plasma energy per pulse, and the optical characteristics of the discharge as a function of both air pressure and the parameters of the discharge-excitation system are studied. This made it possible to establish the optimal conditions for sputtering the polycrystalline electrodes and synthesizing the relevant films on a substrate installed near the electrodes’ system. The surface microstructures based on both silver-sulphide sputtered in the discharge and air-molecules’ dissociation products are synthesized. The Raman light-scattering spectra of the surface microstructures synthesized from both the electrodes’ spray products and air-molecules’ decay products in the discharge are studied.

Key words: overvoltage nanosecond discharge, silver sulphide, air, thin films, UV radiation, Ra-man spectroscopy.

Issue DOI:  https://doi.org/10.15407/nnn.21.04.721

References
  1. K. Tominaga, N. Umezu, I. Mori, T. Ushiro, T. Moriga, and I. Nakabayashi, Thin Solid Films., 316, Nos. 1–2: 85 (1998); https://doi.org/10.1016/S0040-6090(98)00394-0
  2. L. Holland and G. Samuel, Surface Technology, 14, No. 3: 205 (1981); https://doi.org/10.1016/0376-4583(81)90082-0
  3. Zhubo Liu, A. A. Rogachåv, M. A. Yarmolenko, X. H. Jiang, A. V. Rogachåv, and D. L. Gorbachev, Problemy Fiziki, Matematiki i Tekhniki, 14, Iss. 1: 37 (2013).
  4. S. I. Sadovnikov, A. A. Rempel’, and A. I. Gusev, JETP Letters, 106: 587 (2017); https://doi.org/10.1134/S002136401721010X
  5. Å. Ñ. Vorontsova, Yu. V. Kuznetsova, and S. V. Rempel, Phys. Technologies. Innovations: Proceedings of the VII International Youth Scientific Conference (May 18–22, 2020, Yekaterinburg, RF) (Yekaterinburg: UrFU: 2020), p. 339.
  6. Mahmoud Trad, Alexandre Nomin?, Natalie Tarasenka, Jaafar Ghanbaja, C?dric No?l, Malek Tabbal, and Thierry Belmonte, Front. Chem. Sci. Eng., 13: 1 (2019); https://doi.org/10.1007/s11705-019-1802-7
  7. Y. Wang, B. M. Luther, F. Pedaci, M. Berrill, F. Brizuela, M. Marconi, M. A. Larotonda, V. N. Shlyaptsev, and J. J. Rocca, IEEE Transactions on Plasma Science, 33, No. 2: 584 (2005); https://doi.org/10.1109/TPS.2005.845278
  8. A. K. Shuaibov, A. Y. Minya, Z. T. Gomoki, A. A. Malinina, and A. N. Malinin, Surface Engineering and Applied Electrochemistry, 56, No. 4: 510 (2020); https://doi.org/10.3103/S106837552004016X
  9. O. K. Shuaibov, O. Y. Minya, A. O. Malinina, O. M. Malinin, and I. V. Shevera, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 11: 89 (2021); https://doi.org/10.15407/nnn.19.01.189
  10. K. Shuaibov and A.O. Malinina, Progress in Physics of Metals, 22, No. 3: 382 (2021); https://doi.org/10.15407/ufm.22.03.382
  11. O. K. Shuaibov, A. O. Malinina, and O. M. Malinin, Kharakterystyky i Parametry Perenapruzhenoho Nanosekundnoho Rozriadu v Paro-Hazovykh Sumishakh ta Rozrobka Novykh Hazorozriadnykh Lamp [Characteristics and Parameters of Overvoltage Nanosecond Discharge in Vapor–Gas Mixtures and Development of New Gas Discharge Lamps]: Monograph (Uzhhorod: Hoverla: 2021) (in Ukrainian).
  12. V. F. Tarasenko, Runaway Electrons Preionized Diffuse Discharge (New York: Nova Science Publishers Inc.: 2014).
  13. D. V. Beloplotov and V. F. Tarasenko, Journal of Physics: Conference Series, 1393: 012004 (2019); https://doi.org/10.1088/1742-6596/1393/1/012004
  14. G. A. Mesyats, Usp. Fizich. Nauk, 165, No. 6: 601 (1995) (in Russian); https://doi.org/10.1070/PU1995v038n06ABEH000089
  15. A. Shuaibov, A. Minya, R. Hrytsak, A. Malinina, A. Malinin, Y. Zhiguts, and I. Shevera, Biomedical & Translational Science, 2, No. 1: 1 (2022); https://doi.org/10.33425/2768-4911.1025
  16. O. K. Shuaibov, O. Y. Minya, R. V. Hrytsak, A. A. Malinina, A. N. Malinin, Yu. Yu. Bilak, and Z. T. Homoki, J. Pharmaceutics and Pharmacology Research, 5, No. 7: 1 (2022); https://doi.org/10.31579/2693-7247/093
  17. Î. K. Shuaibov, O. Y. Mynia, O. M. Malinin, R. V. Hrytsak, A. O. Malinina, A. I. Pogodin, and Z. T. Homoki, Journal of Nano- and Elecronic Physics, 15, No. 1: 01010 (2023); https://doi.org/10.21272/jnep.15(1).01010
  18. I. Martina, R. Wiesinger, D. Jembrih-Simburger, and M. Schreiner, e-PS, 9: 1 (2012).
  19. S. I. Sadovnikov, E. G. Vovkotrub, and A. A. Rempel, Dokl. Phys. Chem., 480, No. 6: 81 (2018); https://doi.org/10.1134/S0012501618060027
  20. Y. Delgado-Bele?o, M. Cortez-Valadez, C.E. Martinez-Nu?ez, R. Britto Hurtado, R. A. B. Alvarez, O. Rocha-Rocha, H. Arizpe-Ch?vez, A. Perez-Rodr?guez, and M. Flores-Acosta, Chemical Physics, 463: 106 (2015); https://doi.org/10.1016/j.chemphys.2015.10.009
  21. C. Nims, B.Cron, M.Wetherington, J. Macalady, and J. Cosmidis, Sci. Rep., 9: 7971 (2019); https://doi.org/10.1038/s41598-019-44353-6
  22. L. Mandrile, I. Cagnasso, L. Berta, A.M. Giovannozzi,M. Petrozziello, F. Pellegrino, A. Asproudi, F. Durbiano, and A. M. Rossi, Food Chemistry, 326: 127009 (2020); https://doi.org/10.1016/j.foodchem.2020.127009
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement