Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

O. M. Bordun, I. O. Bordun, I. I. Medvid, M. V. Protsak, I. Yo. Kukharskyy, V. G. Bihday, I. M. Kofliuk, I. Yu. Khomyshyn, and D. S. Leonov
Surface Morphology of ZnGa2O4:Cr Thin Films Obtained by RF Ion-Plasma Sputtering
709–720 (2023)

PACS numbers: 61.72.Mm, 68.35.Ct, 68.37.Ps, 68.55. A-, 68.55. J-, 81.15.Cd, 82.80.Pv

Thin ZnGa2O4:Cr films are obtained by radio-frequency (RF) ion-plasma sputtering in an argon atmosphere on the single-crystal NaCl and amorphous nu-SiO2 substrates. The study of the surface morphology of thin films by atomic force microscopy (AFM) shows that the average diameter of the grains forming the film surface decreases from 320 nm to 211 nm, when switching over from NaCl substrates to nu-SiO2 ones. The heat treatment of films on nu-SiO2 substrates in an argon atmosphere has weak effect on the average grain diameter, while heat treatment in an air leads to an increase in the average grain diameter to 316 nm. XPS spectra show that, after high-temperature annealing, the studied films may contain an excessive presence of the Ga2O3 phase in addition to the ZnGa2O4 phase. It has been found that, when ZnGa2O4:Cr films are annealed in an air, grain growth occurs along the film surface, and when annealed in an argon atmosphere, grain growth occurs perpendicularly to the film surface.

Key words: zinc gallate, chrome activator, thin films, crystallites, surface morphology.

https://doi.org/

References
  1. X. Yu, T. Marks and A. Facchetti, Nature Mater., 15: 383 (2016); https://doi.org/10.1038/nmat4599
  2. P. Koralli, S. F. Varol, G. Mousdis, D. E. Mouzakis, Z. Merdan, and M. Kompitsas, Chemosensors, 10: 162 (2022); https://doi.org/10.3390/chemosensors10050162
  3. O. M. Bordun and A. T. Stets’kiv, J. Appl. Spectrosc., 68, No. 5: 882 (2001); https://doi.org/10.1023/A:1013266505668
  4. A. Das and D. Basak, ACS Appl. Electron. Mater., 3, No. 9: 3693 (2021); https://doi.org/10.1021/acsaelm.1c00393
  5. O. M. Bordun, B. O. Bordun, I. M. Kofliuk, I. Yo. Kukharskyy, I. I. Medvid, and M. V. Protsak, IEEE XIIth International Conference on Electronics and Information Technologies (ELIT) (19–21, May 2021, Lviv, Ukraine), p. 33–36; https://doi.org/10.1109/ELIT53502.2021.9501095
  6. P. Sakthivel, R. Murugan, S. Asaithambi, M. Karuppaiah, S. Rajendran, and G. Ravi, J. Phys. Chem. of Solids, 126: 1 (2019); https://doi.org/10.1016/j.jpcs.2018.10.031
  7. R.-H. Horng, Ch.-Yi Huang, S.-L. Ou, T.-K. Juang, and P.-L. Liu, Cryst. Growth Des., 17, No. 11: 6071 (2017); https://doi.org/10.1021/acs.cgd.7b01159
  8. Ch.-Ch. Yen, A. K. Singh, H. Chang, K.-P. Chang, P.-W. Chen, P.-L. Liu, and D.-S. Wuu, Appl. Surf. Science, 597: 153700 (2022); https://doi.org/10.1016/j.apsusc.2022.153700
  9. H. Lee, Ch. W. Bark, and H. W. Cho, Jpn. J. Appl. Phys., 58: SDDE15 (2019); https://doi.org/10.7567/1347-4065/ab1478
  10. Zh. Jiao, G. Ye, F. Chen, M. Li, and J. Liu, Sensors, 2: 71 (2002); https://doi.org/10.3390/s20300071
  11. Y. E. Lee, D. P. Norton, J. D. Budai, and Y. Wei, J. Appl. Phys., 90, No. 8: 3863 (2001); https://doi.org/10.1063/1.1396829
  12. S.-H. Tsai, Yu.-Ch. Shen, Ch.-Yi Huang, and R.-H. Horng, Appl. Surf. Science, 496: 143670 (2019); https://doi.org/10.1016/j.apsusc.2019.143670
  13. M. N. da Silva, J. M. de Carvalho, M. C. de Abreu Fantini, L. A. Chiavacci, and C. Bourgaux, ACS Appl. Nano Mater., 2, No. 11: 6918 (2019); https://doi.org/10.1016/j.cofs.2019.08.010
  14. A. Guo, L. Zhang, N. Cao, T. Lu, Y. Zhu, D. Tian, Zh. Zhou, Sh. He, B. Xia, and F. Zhao, Appl. Phys. Express, 16: 021004 (2023); https://doi.org/10.35848/1882-0786/acb98c
  15. Y. Liu, T. Zheng, X. Zhang, and Ch. Chen, Scientific Reports, 13: 14430 (2023); https://doi.org/10.1038/s41598-023-41658-5
  16. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 80, No. 5: 721 (2013); https://doi.org/10.1007/s10812-013-9832-2
  17. Ch. S. Kamal, S. Boddu, B. Vishwanadh, K. R. Rao, V. Sudarsan, and R. K. Vatsa, J. Lumin., 188: 429 (2017); https://doi.org/10.1016/j.jlumin.2017.04.056
  18. H. Liang, F. Meng, B. K. Lamb, Q. Ding, L. Li, Zh. Wang, and S. Jin, Chem. Mater., 29, No. 17: 7278 (2017); https://doi.org/10.1021/acs.chemmater.7b01930
  19. M. Hirano, Sh. Okumura, Y. Hasegawa, and M. Inagaki, Intern. J. Inorg. Mater., 3: 797 (2001); https://doi.org/10.1016/S1466-6049(01)00178-7
  20. Z. Lou, L. Li, and G. Shen, Nano Res., 8: 2162 (2015); https://doi.org/10.1007/s12274-015-0723-0
  21. A. Sood, F.-G. Tarntair, Yu-X. Wang, T.-Ch. Chang, Yu-H. Chen, P.-L. Liu, and R.-H. Horng, Results in Physics, 29: 104764 (2021); https://doi.org/10.1016/j.rinp.2021.104764
  22. Y. Jang, S. Hong, J. Seo, H. Cho, K. Char, and Z. Galazka, Appl. Phys. Lett., 116: 202104 (2020); https://doi.org/10.1063/5.0007716
  23. P. D. Rack, J. J. Peterson, M. D. Potter, and W. Park, J. Mater. Res., 16, No. 5: 1429 (2001); https://doi.org/10.1557/JMR.2001.0199
  24. P. Dhak, U. K. Gayen, S. Mishra, P. Pramanik, and A. Roy, J. Appl. Phys., 106, No. 6: 063721 (2009); https://doi.org/10.1063/1.3224866
  25. K. Wasa, M. Kitabatake, and H. Adachi, Thin Film Materials Technology: Sputtering of Compound Materials (Springer-Verlag GmbH&Co. KG–William Andrew Inc. Publishing: 2004).
  26. O. M. Bordun, I. Yo. Kukharskyy, and V. G. Bihday, J. Appl. Spectrosc., 78, No. 6: 922 (2012); https://doi.org/10.1007/s10812-012-9555-9
  27. W.-K. Wang, K.-F. Liu, P.-Ch. Tsai, Y.-J. Xu, and Sh.-Y. Huang, Coatings, 9, No. 12: 859 (2019); https://doi.org/10.3390/coatings9120859
  28. O. M. Bordun, V. G. Bihday, and I. Yo. Kukharskyy, J. Appl. Spectrosc., 81, No. 1: 43 (2014); https://doi.org/10.1007/s10812-014-9884-y
  29. O. M. Bordun, I. Y. Kukharskyy, and B. O. Bordun, Physics and Chemistry of Solid State, 16, No. 1: 74 (2015) (in Ukrainian); https://doi.org/10.15330/pcss.16.1.74-78
  30. C. V. Thompson, Sol. State Phys., 55: 269 (2001); https://doi.org/10.1016/S0081-1947(01)80006-0
  31. C. V. Thompson, J. Appl. Phys., 58, No. 2: 763 (1985); https://doi.org/10.1063/1.336194
  32. C. V. Thompson, Interface Science, 6: 85 (1998); https://doi.org/10.1023/A:1008616620663
  33. O. M. Bordun, I. O. Bordun, I. M. Kofliuk, I. Yo. Kukharskyy, I. I. Medvid, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 20, Iss. 1: 91 (2022); https://doi.org/10.15407/nnn.20.01.091
  34. O. M. Bordun, B. O. Bordun, I. Yo. Kukharskyy, I. I. Medvid, I. I. Polovynko, Zh. Ya. Tsapovska, and D. S. Leonov, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 1: 159 (2021); https://doi.org/10.15407/nnn.19.01.159
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement