Download the full version of the article (in PDF format)
L. S. LEVCHUK, R. A. SHKARBAN, D. S. LEONOV, T. I. VERBYTSKA, M. Yu. BARABASH, and Iu. M. MAKOGON
A1-to-L10 phase Transformation in Nanoscale FePd–Ag Films During Annealing in Vacuum and H2
687–699 (2023)
PACS numbers: 64.60.Cn, 68.35.Ct, 68.37.Ps, 68.55.J-, 75.50.Vv, 75.70.Ak, 81.30.Hd
In this work, the influence of the heat-treatment environment (vacuum, hydrogen) on the processes of ordering in the nanoscale FePd films with an additional layer of Ag is investigated. FePd/Ag films are obtained by combined magnetron deposition of FePd-alloy layers of equiatomic composition and Ag on the SiO2/Si(001) substrate at room temperature. The total thickness of the films is of 5 nm, and the thickness of the Ag layer varies from 0.3 nm to 0.9 nm. After deposition, the film is annealed in a vacuum or in a hydrogen atmosphere at a temperature of 600–700?C. The duration of annealing in a vacuum is of 0.5–20 hours, and in H2, it is of 0.5–1 hours. As established, heat treatment in a hydrogen, compared to annealing in a vacuum, accelerates the ordering process and L10-phase formation that changes magnetic states in the FePd(4.7 nm)/Ag(0.3 nm) films and promotes the formation of films with both anisotropic magnetic properties and a smooth surface. An increase in the thickness of the additional Ag layer in the films is accompanied by a decrease in the coercivity.
Key words: thin films, FePd/Ag, hydrogen, annealing, L10-ordered phase, coercive force.
Issue DOI: https://doi.org/10.15407/nnn.21.04.687
References
- D. Weller, A. Moser, L. Folks, M. Best, M.F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn., 36: 10 (2000); https://doi.org/10.1109/20.824418
- D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, J. Vac. Sci. Technol. B, 34: 060801 (2016); https://doi.org/10.1116/1.4965980
- O.?V. Shamis, I.?A. Vladymyrskyi, Yu.?M. Makogon, and S.?I. Sidorenko, Usp. Fiz. Met., 19, No. 3: 337 (2018); https://doi.org/10.15407/ufm.19.03.337
- T. Liu, L. Ma, S. Q. Zhao, D. D. Ma, L. Li, G. Cheng, and G. H. Rao, J. Mater. Sci.: Mater. Electron., 28: 3616 (2017); https://doi.org/10.1007/s10854-016-5963-6
- P.-Ch. Chang, T.-H. Chuang, D.-H. Wei, and W.-Ch. Lin, Appl. Phys. Lett., 116: 102407 (2020); https://doi.org/10.1063/1.5142625
- Z. Yanli, C. Gang, X. Xiaozong, P. Kuang, L. Lin, D. Yusong, Z. Xin, M. Lei, and G. Zhengfei, Rare Met. Mater. Eng., 46: 1788 (2017); https://doi.org/10.1016/s1875-5372(17)30167-4
- J. Ko, T. Bae, and J. Hong, J. Appl. Phys., 112: 113919 (2012); https://doi.org/10.1063/1.4769737
- Y. J. Chiu, C. Y. Shen, H. W. Chang, and S. R. Jian, Results Phys., 9: 17 (2018); https://doi.org/10.1016/j.rinp.2018.02.024
- B. Li, W. Liu, X. G. Zhao, S. Ma, W. J. Gong, J. N. Feng, F. Wang, and Z. D. Zhang, Mater. Lett., 100: 58 (2013); https://doi.org/10.1016/j.matlet.2013.02.102
- Y. Tokuoka, Y. Seto, T. Kato, and S. Iwata, J. Appl. Phys., 115: 17B716 (2014); https://doi.org/10.1063/1.4864251
- P. V. Makushko, M. N. Shamis, N. Y. Sñhmidt, I. E. Kotenko, S. Gulyas, G. L. Katona, T. I. Verbytska, D. L. Beke, M. Albrecht, and Iu. M. Makogon, Applied Nanoscience, 10, No. 12: 4809 (2020); https://link.springer.com/article/10.1007/s13204-020-01552-2
- P. V. Makushko, M. Yu. Verbytska, M. N. Shamis, T. I. Verbytska, G. Beddies, N. Y. Safonova, M. Albrecht, and Iu. M. Makogon, Applied Nanoscience, 10, No. 8: 2775 (2020). https://link.springer.com/article/10.1007/s13204-019-01066-6
- P. V. Makushko, M. Yu. Verbytska, M. N. Shamis, A. P. Burmak, Ya. A. Berezniak, K. A. Graivoronska, T. I. Verbytska, and Yu. N. Makogon, Powder Metallurgy and Metal Ceramics, 58, Iss. 3–4: 197 (2019); https://doi.org/10.1007/s11106-019-00064-1
- M. N. Shamis, N. Y. Schmidt, T. I. Verbytska, P. V. Makushko, G. Beddies, M. Albrecht, and Yu. N. Makogon, Applied Nanoscience, 12, No. 4: 1227 (2022); https://doi.org/10.1007/s13204-021-01809-4
- M. N. Shamis, P. V. Makushko, I. D. Biesiedin, Ya. O. Berezniak, K. O. Hraivoronska, T. I. Verbytska, and Yu. M. Makohon, Metalofiz. Noveishie Tekhnol., 43, No. 4: 505 (2021); https://mfint.imp.kiev.ua/article/v43/i04/MFiNT.43.0505.pdf
- A. Vladymyrskyi, M. V. Karpets, F. Ganss, G. L. Katona, D. L. Beke, S. I. Sidorenko, T. Nagata, T. Nabatame, T. Chikyow, G. Beddies, M. Albrecht, and I. M. Makogon, J. Appl. Phys., 114, Iss. 16: 164314 (2013); https://doi.org/10.1063/1.4827202
- E. A. Gonzalez, P. V. Jasen, N. J. Castellani, and A. Juan, J. Phys. Chem. Solids, 65: 1799 (2004); https://doi.org/10.1016/j.jpcs.2004.05.008
- E. A. Gonzalez, P. V. Jasen, N. J. Castellani, and A. Juan, Solid State Commun., 131: 81 (2004); https://doi.org/10.1016/j.ssc.2004.04.046
- P. V. Jasen, E. A. Gonzalez, N. J. Castellani, and A. Juan, Phys. Rev. B: Condens. Matter Mater. Phys., 71: 1 (2005); https://doi.org/10.1103/physrevb.71.235422
- P.-Ch. Chang, Y.-Ch. Chen, C.-Ch. Hsu åt al., Journal of Alloys and Compounds, 710: 37 (2017); https://doi.org/10.1016/j.jallcom.2017.03.221
|