Issues

 / 

2023

 / 

vol. 21 / 

Issue 4

 



Download the full version of the article (in PDF format)

L. S. LEVCHUK, R. A. SHKARBAN, D. S. LEONOV, T. I. VERBYTSKA, M. Yu. BARABASH, and Iu. M. MAKOGON
A1-to-L10 phase Transformation in Nanoscale FePd–Ag Films During Annealing in Vacuum and H2
687–699 (2023)

PACS numbers: 64.60.Cn, 68.35.Ct, 68.37.Ps, 68.55.J-, 75.50.Vv, 75.70.Ak, 81.30.Hd

In this work, the influence of the heat-treatment environment (vacuum, hydrogen) on the processes of ordering in the nanoscale FePd films with an additional layer of Ag is investigated. FePd/Ag films are obtained by combined magnetron deposition of FePd-alloy layers of equiatomic composition and Ag on the SiO2/Si(001) substrate at room temperature. The total thickness of the films is of 5 nm, and the thickness of the Ag layer varies from 0.3 nm to 0.9 nm. After deposition, the film is annealed in a vacuum or in a hydrogen atmosphere at a temperature of 600–700?C. The duration of annealing in a vacuum is of 0.5–20 hours, and in H2, it is of 0.5–1 hours. As established, heat treatment in a hydrogen, compared to annealing in a vacuum, accelerates the ordering process and L10-phase formation that changes magnetic states in the FePd(4.7 nm)/Ag(0.3 nm) films and promotes the formation of films with both anisotropic magnetic properties and a smooth surface. An increase in the thickness of the additional Ag layer in the films is accompanied by a decrease in the coercivity.

Key words: thin films, FePd/Ag, hydrogen, annealing, L10-ordered phase, coercive force.

https://doi.org/

References
  1. D. Weller, A. Moser, L. Folks, M. Best, M.F. Toney, M. Schwickert, J.-U. Thiele, and M. F. Doerner, IEEE Trans. Magn., 36: 10 (2000); https://doi.org/10.1109/20.824418
  2. D. Weller, G. Parker, O. Mosendz, A. Lyberatos, D. Mitin, N. Y. Safonova, and M. Albrecht, J. Vac. Sci. Technol. B, 34: 060801 (2016); https://doi.org/10.1116/1.4965980
  3. O.?V. Shamis, I.?A. Vladymyrskyi, Yu.?M. Makogon, and S.?I. Sidorenko, Usp. Fiz. Met., 19, No. 3: 337 (2018); https://doi.org/10.15407/ufm.19.03.337
  4. T. Liu, L. Ma, S. Q. Zhao, D. D. Ma, L. Li, G. Cheng, and G. H. Rao, J. Mater. Sci.: Mater. Electron., 28: 3616 (2017); https://doi.org/10.1007/s10854-016-5963-6
  5. P.-Ch. Chang, T.-H. Chuang, D.-H. Wei, and W.-Ch. Lin, Appl. Phys. Lett., 116: 102407 (2020); https://doi.org/10.1063/1.5142625
  6. Z. Yanli, C. Gang, X. Xiaozong, P. Kuang, L. Lin, D. Yusong, Z. Xin, M. Lei, and G. Zhengfei, Rare Met. Mater. Eng., 46: 1788 (2017); https://doi.org/10.1016/s1875-5372(17)30167-4
  7. J. Ko, T. Bae, and J. Hong, J. Appl. Phys., 112: 113919 (2012); https://doi.org/10.1063/1.4769737
  8. Y. J. Chiu, C. Y. Shen, H. W. Chang, and S. R. Jian, Results Phys., 9: 17 (2018); https://doi.org/10.1016/j.rinp.2018.02.024
  9. B. Li, W. Liu, X. G. Zhao, S. Ma, W. J. Gong, J. N. Feng, F. Wang, and Z. D. Zhang, Mater. Lett., 100: 58 (2013); https://doi.org/10.1016/j.matlet.2013.02.102
  10. Y. Tokuoka, Y. Seto, T. Kato, and S. Iwata, J. Appl. Phys., 115: 17B716 (2014); https://doi.org/10.1063/1.4864251
  11. P. V. Makushko, M. N. Shamis, N. Y. Sñhmidt, I. E. Kotenko, S. Gulyas, G. L. Katona, T. I. Verbytska, D. L. Beke, M. Albrecht, and Iu. M. Makogon, Applied Nanoscience, 10, No. 12: 4809 (2020); https://link.springer.com/article/10.1007/s13204-020-01552-2
  12. P. V. Makushko, M. Yu. Verbytska, M. N. Shamis, T. I. Verbytska, G. Beddies, N. Y. Safonova, M. Albrecht, and Iu. M. Makogon, Applied Nanoscience, 10, No. 8: 2775 (2020). https://link.springer.com/article/10.1007/s13204-019-01066-6
  13. P. V. Makushko, M. Yu. Verbytska, M. N. Shamis, A. P. Burmak, Ya. A. Berezniak, K. A. Graivoronska, T. I. Verbytska, and Yu. N. Makogon, Powder Metallurgy and Metal Ceramics, 58, Iss. 3–4: 197 (2019); https://doi.org/10.1007/s11106-019-00064-1
  14. M. N. Shamis, N. Y. Schmidt, T. I. Verbytska, P. V. Makushko, G. Beddies, M. Albrecht, and Yu. N. Makogon, Applied Nanoscience, 12, No. 4: 1227 (2022); https://doi.org/10.1007/s13204-021-01809-4
  15. M. N. Shamis, P. V. Makushko, I. D. Biesiedin, Ya. O. Berezniak, K. O. Hraivoronska, T. I. Verbytska, and Yu. M. Makohon, Metalofiz. Noveishie Tekhnol., 43, No. 4: 505 (2021); https://mfint.imp.kiev.ua/article/v43/i04/MFiNT.43.0505.pdf
  16. A. Vladymyrskyi, M. V. Karpets, F. Ganss, G. L. Katona, D. L. Beke, S. I. Sidorenko, T. Nagata, T. Nabatame, T. Chikyow, G. Beddies, M. Albrecht, and I. M. Makogon, J. Appl. Phys., 114, Iss. 16: 164314 (2013); https://doi.org/10.1063/1.4827202
  17. E. A. Gonzalez, P. V. Jasen, N. J. Castellani, and A. Juan, J. Phys. Chem. Solids, 65: 1799 (2004); https://doi.org/10.1016/j.jpcs.2004.05.008
  18. E. A. Gonzalez, P. V. Jasen, N. J. Castellani, and A. Juan, Solid State Commun., 131: 81 (2004); https://doi.org/10.1016/j.ssc.2004.04.046
  19. P. V. Jasen, E. A. Gonzalez, N. J. Castellani, and A. Juan, Phys. Rev. B: Condens. Matter Mater. Phys., 71: 1 (2005); https://doi.org/10.1103/physrevb.71.235422
  20. P.-Ch. Chang, Y.-Ch. Chen, C.-Ch. Hsu åt al., Journal of Alloys and Compounds, 710: 37 (2017); https://doi.org/10.1016/j.jallcom.2017.03.221
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement