Issues

 / 

2023

 / 

vol. 21 / 

Issue 3

 



Download the full version of the article (in PDF format)

S. M. DYBKOVA, L. S. REZNICHENKO, Z. R. ULBERG, V. I. PODOLSKA, T. G. GRUZINA, O. B. LYUTKO, K. B. VITRAK, and N. I. GRYSHCHENKO
Antibacterial Properties of Nanobiocomposite Materials Based on Biogenic Silver Nanoparticles
643–663 (2023)

PACS numbers: 81.07.Pr,81.16.Fg,87.16.-b,87.19.xb,87.64.-t,87.85.jj,87.85.Rs

The article presents the experimental results on the antibacterial properties of nanobiocomposite (NBC) material, which contains ultradispersed silver nanoparticles (NPs) synthesized with the probiotic Lactobacillus plantarum. Synthesized NBC samples are investigated with transmission and scanning electron microscopies, spectroscopy analysis and electrophoresis method. As shown, the physical and chemical properties of the NBC surface, which are determined by the silver-NPs’ concentration and the pH of the medium, play a significant role in the NBC antimicrobial activity. The electrosurface properties of the nanobiocomposite based on L. plantarum and stabilized in the matrix cell ultradispersed silver are characterized by a low surface charge and a hydrophilic surface. The electrokinetic potential correlates with the content of silver NPs. The Ag-NPs’ concentration of 15–25 mg/g is optimal and corresponds to the least damage of the cell matrix and the formation of silver NPs in a narrow size range of 2–6 nm. The maximum values of the NBC sigma-potential are in the range of pH 6.5–7.0. Such parameters ensure a high antibacterial effect of NBC. The method of determining the respiratory activity (RA) of the test strain of bacteria E. coli K–A shows the concentration-dependent sensitivity of RA to NBC. The inhibiting concentration of RA by nanobiocomposite is of 6–8 µg/ml. The antibacterial activity of NBC against 17 strains of the pathogenic and opportunistic microorganisms, which are threatening agents of nosocomial diseases and complications in surgical practice, is studied. Almost all tested strains show a wide level of sensitivity to NBC, inhibiting the growth of the gram-(+) and gram-(-) bacteria. The increased activity of NBC in relation to the clinical isolate of S. aureus compared to the museum strain is shown. The minimum inhibitory concentrations (MIC) of NBC for the studied test cultures of microorganisms ranged from 1.5 µg/ml to 3.5 µg/ml. The minimum bactericidal concentration (MBC) of NBC is in the range of 8–22 µg/ml. The results obtained indicate the prospects of the ‘green-synthesized’ product for medicine and veterinary medicine due to the combination of an environmentally safe synthesis method, prolonged mild action and low toxicity, as well as a wide spectrum of antimicrobial activity of NBC.

Key words: nanobiocomposite, silver nanoparticles, antimicrobial action, respiratory activity, lactobacilli, zeta-potential.

https://doi.org/10.15407/nnn.21.03.643

References
  1. R. Mirzaei, P. Goodarzi, M. Asadi, A. Soltani, H. Ali Abraham Aljanabi, A. S. Jeda, S. Dashtbin, and S. Jalalifar, IUBMB Life, 72, No. 10: 2097(2020); https://doi.org./10.1002/iub.2356
  2. E. Sanchez-Lopez, D. Gomes, G. Esteruelas, L. Bonilla, A. L. Lopez-Machado, R. Galindo, A. Cano, M. Espina, M. Ettcheto, A. Camins, A. M. Silva, A. Durazzo, A. Santini, M. L. Garcia, and E. B. Souto, Nanomaterials, 10: 292 (2020); https://doi.org/10.3390/nano10020292
  3. M. G. Correa, F. B. Mart?nez, C. P. Vidal, C. Streitt, J. Escrig, C. L. de Dicastillo, Beilstein J. Nanotechnol., 11: 1450 (2020); https://doi.org/10.3762/bjnano.11.129
  4. S. A. Amer, H. M. Abushady, R. M. Refay, and M. A. Mailam, J. Genet. Eng. Biotechnol., 19: 13 (2021); https://doi.org/10.1186/s43141-020-00093-z
  5. R. Y. Pelgrift and A. J. Friedman, Adv. Drug Deliv. Rev., 65: 1803 (2013); https://doi.org/10.1016/j.addr.2013.07.011
  6. R. Singh, U. U. Shedbalkar, S. A. Wadhwani, and B. A. Chopade, Appl. Microbiol. Biotechnol., 99, No. 11: 4579 (2015); https://doi.org/10.1007/s00253-015-6622-1
  7. M. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre, and K. R. Pardesi, Front. Microbiol., 10: 539 (2019); doi:10.3389/fmicb.2019.00539
  8. S. M. Dybkova, V. I. Podolska, N. I. Grishchenko, and Z. R. Ulberg, Nanosistemi, Nanomateriali, Nanotehnologii, 18, No. 1: 189 (2020); https://doi.org/10.15407/nnn.18.01.189
  9. P. Garcia-Vello, G. Sharma, I. Speciale, A. Molinaro, S.-H. Im, and C. De Castro, Carbohyd. Polym., 233: 115857 (2020); https://doi.org/10.1016/j.carbpol.2020.115857
  10. B. Raymond, Evol. Appl., 12: 1079(2019); https://doi.org/10.1111/eva.12808
  11. S. Scandorieiro, B. Rodrigues, E. Nishio, L. Panagio, A. de Oliveira, N. Dur?n, G. Nakazato, and R. Kobayashi, Front. Microbiol., 13: 842600 (2022); https://doi.org/10.3389/fmicb.2022.842600
  12. K. Unfried, C. Albrecht, and L. Klotz, Nanotoxicology, 1, No. 1: 52 (2007); https://doi.org/10.1080/00222930701314932
  13. A. P. V. F. Maillard, S. Gon?alves, N. C. Santos, B. A. L. de Mishima, P. R. Dalmasso, and A. Hollmann, Biochim. Biophys. Acta (BBA) – Biomembr., 1861, Iss. 6: 1086 (2019); https://doi.org/10.1016/j.bbamem.2019.03.011
  14. J. C. De Man, M. Rogosa, and M. E. Sharpe, J. Appl. Bacteriol., 23: 130 (1960); http://dx.doi.org/10.1111/j.1365-2672.1960.tb00188.x
  15. V. I. Podolska, E. Yu. Voitenko, N. I. Grishchenko, Z. R. Ulberg, A. G. Savkin, and L. N. Yakubenko, Nanostrukt. Materialoved. [Materials Science of Nanostructures], 2: 53 (2014) (in Russian).
  16. V. I. Podolska, O. Yu. Voitenko, O. G. Savkin, N. I. Grishchenko, Z. R. Ulberg, and L. M. Yakubenko, Nanostrukt. Materialoved. [Materials Science of Nanostructures], 1: 64 (2014) (in Russian).
  17. Metodychni Rekomendatsii ‘Vykorystannya Biobezpechnykh Nanochastynok Metaliv u Skladi Metalovmisnykh Probiotykiv dlya Pidvyshchennya Yikh Ehfektyvnosti’ [Methodical Recommendations ‘Using of Biosafe Nanoparticles into Composition with Metal-Containing Probiotics for Increasing of Their Efficiency’] (Kyiv: Public Veter. and Fito. Service of Ukraine: 2010) (in Ukrainian).
  18. S. S. Dukhin and B. V. Deryagin, Elektroforez [Electrophoresis] (Ěoskva: Nauka: 1976) (in Russian).
  19. Metodychni Vkazivky ‘Vyznachennya Chutlyvosti Mikroorganizmiv do Antybakterialnykh Preparativ’ [Methodological Instructions ‘Determining the Sensitivity of Microorganisms to Antibacterial Preparations’] (Order of the Ministry of Health of Ukraine No. 167, dated April 5, 2007) (in Ukrainian).
  20. A. Roy, O. Bulut, S. Some, A. K. Mandal, and M. D. Yilmaz, RSC Adv., 9: 2673 (2019); https://doi.org/10.1039/C8RA08982E
  21. M. Balouiri, M. Sadiki, and S. K. Ibnsouda, J. Pharm. Anal., 6, No. 2: 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
  22. Y. Y. Loo, Y. Rukayadi, M. Nor-Khaizura, C. H. Kuan, B. W. Chieng, M. Nishibuchi, and S. Radu, Front. Microbiol., 9: 1555 (2018); https://doi.org/10.3389/fmicb.2018.01555
  23. K. Chitra and G. Annadurai, BioMed Res. Int., 2014: Article ID 725165; https://dx.doi.org/10.1155/2014/725165
  24. K. Khalid, Int. J. Biosci., 1, No. 3: 1 (2011); Corpus ID: 33686670
  25. V. I. Podolska, O. Yu. Voitenko, Z. R. Ulberg, L. M. Yakubenko N. I. Grishchenko, and V. N. Ermakov, Khim. Fiz. Tekhn. Pov. [Chemistry, Physics and Surface Technology], 8, No. 2: 143 (2017) (in Ukrainian); doi:10.15407/hftp08.02.143
  26. P. Schar-Zammaretti, M.-L. Dillmann, N. D’Amico, M. Affolter, and J. Ubbink, Appl. Environ. Microbiol., 71, No. 12: 8165 (2005); https://doi.org/10.1128/AEM.71.12.8165-8173.2005
  27. D. G. Deryabin, L. V. Efremova, S. Vasilchenko, E. V. Saidakova, E. A. Sizova, P. A. Troshin, A. V. Zhilenkov, and E. A. Khakina, J. Nanobiotechnol., 50: 13 (2015); https://doi.org/10.1186/s12951-015-0112-6
  28. B. Buszewski, V. Railean-Plugaru, P. Pomastowski, K. Rafi?ska, M. Szultka-Mlynska, P. Golinska, M. Wypij, D. Laskowski, and H. Dahm, J. Microbiol. Immunol. Infect., 51, No. 1: 45 (2018); https://doi.org/10.1016/j.jmii.2016.03.002
  29. C. J. P. Boonaert and P. G. Rouxhet, Appl Environ Microbiol., 66, No. 6: 2548 (2000); https://doi.org/10.1128/AEM.66.6.2548-2554.2000
  30. M. M. Domingues, P. M. Silva, H. G. Franquelim, F. A. Carvalho, M. A. R. B. Castanho, and N. C. Santos, Nanomedicine, 10: 543 (2014); https://doi.org/10.1016/j.nano.2013.11.002
  31. S. S. Khan, A. Mukherjee, and N. Chandrasekaran, Colloids Surf. B, 87, No. 1: 129 (2011); https://doi.org/10.1016/j.colsurfb.2011.05.012
  32. N. Jain, A. Bhargava, M. Rathi, R. V. Dilip, and J. Panwar, PLoS One, 10, No. 7: e0134337 (2015); https://doi.org/10.1371/journal.pone.0134337
  33. A. D. Russell, J. Antimicrob. Chemother., 49, No. 4: 597? (2002); https://doi.org/10.1093/jac/49.4.597
  34. V. M. Britsun, N. V. Simurova, I. V. Popova, and O. V. Simurov, J. Org. Pharm. Chem., 19, No. 3: 3 (2021); https://doi.org/10.24959/ophcj.21.231997
  35. S. J. B. Dalir, H. Djahaniani, F. Nabati, and M. Hekmati, Heliyon, 6: e03624 (2020); https://doi:10.1016/j.heliyon.2020.e03624
  36. C. Rodriguez-Serrano, J. Guzman-Moreno, C. Angeles-Chavez, V. Rodr?guez-Gonzalez, J. J. Ortega-Sigala, R. M. Ramirez-Santoyo, and L. E. Vidales-Rodriguez, PLoS One, 15, No. 3: e0230275 (2020); https://doi:10.1371/journal.pone.0230275
  37. A. L. Urzedo, M. C. Goncalves, M. H. M. Nascimento, C. B. Lombello, G. Nakazato, and A. B. Seabra, ACS Biomater. Sci. Eng., 6: 2117 (2020); https://doi:10.1021/acsbiomaterials.9b01685
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement