Issues

 / 

2023

 / 

vol. 21 / 

Issue 3

 



Download the full version of the article (in PDF format)

Z. B. Ibraheem, M. M. Uonis, and M. A. Abed
Determination of Output Power of Si–CNT Solar Cell
575–582 (2023)

PACS numbers: 68.37.Hk,81.05.ub,81.15.Cd,81.15.Gh,84.60.Jt,88.40.hj,88.40.jj

Plasma-sputtering technique is used to deposit the carbon layers with different nanoscale thicknesses on the p-type silicon wafers. The scanning electron-microscope images show the grains’ size growth and aggregation in clusters. The electrical properties of the junction behave as a solar cell, and this gives the proof of formation of the carbon nanotubes (CNT). Both the out power and the efficiency of the Si–CNT cells increase with carbon-layer thickness and light intensity.

Key words: carbon nanotube, solar cells, p–n junction.

https://doi.org/10.15407/nnn.21.03.575

References
  1. Timothy D. Burchell, Carbon Materials for Advanced Technologies (The Boulevard–Langford Lane Kidlington–Oxford, UK: Elsevier Science Ltd 0x5 IGB: 1999).
  2. Andreas Hirsch, Nature Materials, 9: 868 (2010).
  3. T. Pradeep, Nano: The Essential, Understanding the Nanoscience and Nanotechnology (New Delhi: Tata McGraw-Hill Publishing Company Limited: 2007).
  4. Daniel Jay Hornbaker, Electronic Structure of Carbon Nanotube Systems Measured with Scanning Tunneling Microscopy (Ph.D. Thesis in Physics (Graduate College of the University of Illinois at Urbana-Champaign: 2003).
  5. Edward H. Wahl, Laser-Based Diagnostics of Diamond Synthesis Reactors (Report No. TSD-136, The U.S. Department of Energy Basic Energy Sciences) (Stanford, California: Stanford University: 2001).
  6. E. N. Ganesh, International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2, Iss. 4: 311 (2013).
  7. E. N. Farabaugh, A. Feldman, and L. Robins, 2nd International Conference on the Now Diamond Science and Technology (Gaithersburg: National Institute of Standards and Technology, Ceramics Division: 1991), MD 20899.
  8. Jurg Furer, Growth of Single-Wall Carbon Nanotubes by Chemical Vapor Deposition for Electrical Devices (Ph.D. Thesis) (Philosophisch-Naturwissenschaftlichen, Universitat Basel: 2006).
  9. M. Daenen, R. D. de Fouw, B. Hamers, P. G. A. Janssen, K. Schouteden, M. A. J. Veld, The Wondrous World of Carbon Nanotubes. ‘A Review of Current Carbon Nanotube Technologies’ (Phillips NAT-lab–Eindhoven University of Technology: 2003).
  10. Andrea Szaby, Caterina Perri, Anita Csaty, Girolamo Giordano, Danilo Vuono, and Janos B. Nagy, Materials, 3: 3092 (2010); https://doi.org/10.3390/ma3053092
  11. Todd Steiner, Semiconductor Nanostructures for Optoelectronic Applications (Boston–London: Artech House Inc.: 2004).
  12. C. D. Scott, S. Arepalli, P. Nikolaev, and R. E. Smalley, Materials Science & Processing, Appl. Phys., A72: 573 (2001); https://doi.org/10.1007/s003390100761
  13. Muhammad Musaddique, Ali Rafique, and Javed Iqbal, Journal of Encapsulation and Adsorption Sciences, 1: 29 (2011); https://doi.org/10.4236/jeas.2011.12004
  14. Werner Kern, J. Electrochem. Soc., 137, No. 6: 1887 (1990); https://doi.org/10.1149/1.2086825
  15. Wet-Chemical Etching and Cleaning of Silicon (Virginia Semiconductor Inc.: 2003).
  16. Mohammad M. Uonis, Bassam M. Mustafa, and Anwar M. Ezzat, World Journal of Nano Science and Engineering, 4, No. 2: 90 (2014); doi:10.4236/wjnse.2014.42012
  17. Mohammad M. Uonis, Bassam M. Mustafa, and Anwar M. Ezzat, World Journal of Nano Science and Engineering, 4, No. 3: 105 (2014); doi:10.4236/wjnse.2014.43014
  18. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon, 33, No. 7: 883 (1995); https://doi.org/10.1016/0008-6223(95)00017-8
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement