Issues

 / 

2023

 / 

vol. 21 / 

Issue 3

 



Download the full version of the article (in PDF format)

Ahmed Hashim, Aseel Hadi, and Noor Al-Huda Al-Aaraji
Tailoring the Dielectric Properties of PMMA–SiC–Cr2O3 Nanocomposites for Nanoelectronics Applications
527–533 (2023)

PACS numbers: 77.22.Ch,77.22.Gm,77.55.dj,77.84.Lf,81.05.Qk,81.07.Pr,82.35.Np

Films of PMMA–SiC–Cr2O3 nanocomposites are prepared to utilize in various electronics applications. The dielectric properties of PMMA–SiC–Cr2O3 nanocomposites are studied in frequency range from 100 Hz to 5 MHz. The results illustrate both the dielectric constant and the dielectric loss of PMMA–SiC–Cr2O3 nanocomposites reduced, while the conductivity rises with rising of frequency. Dielectric constant, dielectric loss, and electrical conductivity of PMMA are rising with rising in the SiC–Cr2O3 nanoparticles’ ratio. The results on dielectric properties demonstrate that the PMMA–SiC–Cr2O3 nanocomposites may be useful for electronics applications.

Key words: poly(methyl methacrylate), SiC–Cr2O3, nanocomposites, dielectric constant, conductivity.

https://doi.org/10.15407/nnn.21.03.527

References
  1. R. M. Ahmed, A. A. Ibrahim, and E. A. El-Said, Acta Physica Polonica A, 137, No. 3: 317 (2020).
  2. M. M. Abdullah, F. M. Rajab, and S. M. Al-Abbas, AIP Advances, 4: 1 (2014); https://doi.org/10.1063/1.4867012
  3. N. S. Alghunaim, Results in Physics, 9: 1136 (2018); https://doi.org/10.1016/j.rinp.2018.04.023
  4. N. Al-Huda Al-Aaraji, A. Hashim, A. Hadi, and H. M. Abduljalil, Silicon, 14: 4699 (2022); https://doi.org/10.1007/s12633-021-01265-3
  5. A. Hashim, J. Mater. Sci.: Mater. Electron., 32: 2796 (2021); https://doi.org/10.1007/s10854-020-05032-9
  6. A. Hashim, M. H. Abbas, Noor Al-Huda Al-Aaraji, and A. Hadi, Journal of Inorganic and Organometallic Polymers and Materials, 33: 1 (2023); https://doi.org/10.1007/s10904-022-02485-9
  7. N. Al-Huda Al-Aaraji, A. Hashim, A. Hadi, and H. M. Abduljalil, Silicon, 14: 10037 (2022); https://doi.org/10.1007/s12633-022-01730-7
  8. W. O. Obaid and A. Hashim, Silicon, 14: 11199 (2022); https://doi.org/10.1007/s12633-022-01854-w
  9. H. Ahmed, A. Hashim, and H. M. Abduljalil, Ukr. J. Phys., 65, No. 6: 533 (2020); https://doi.org/10.15407/ujpe65.6.533
  10. H. Ahmed and A. Hashim, Silicon, 13: 1509 (2020); https://doi.org/10.1007/s12633-020-00543-w
  11. H. Ahmed and A. Hashim, Silicon, 13: 2639 (2020); https://doi.org/10.1007/s12633-020-00620-0
  12. H. Ahmed and A. Hashim, Silicon, 13: 4331 (2020); https://doi.org/10.1007/s12633-020-00723-8
  13. A. A. Bani-Salameh, A. A. Ahmad, A. M. Alsaad, I. A. Qattan, and I. A. Aljarrah, Polymers, 13: 1 (2021); https://doi.org/10.3390/polym13071158
  14. A. Hazim, H. M. Abduljalil, and A. Hashim, Transactions on Electrical and Electronic Materials, 22: 185 (2021); https://doi.org/10.1007/s42341-020-00224-w
  15. A. Hazim, A. Hashim, and H. M. Abduljalil, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 4: 983 (2020); https://doi.org/10.15407/nnn.18.04.983
  16. A. Hazim, H. M. Abduljalil, and A. Hashim, Transactions on Electrical and Electronic Materials, 21: 550 (2020); https://doi.org/10.1007/s42341-020-00210-2
  17. D. Hassan and A. Hashim, Bulletin of Electrical Engineering and Informatics, 7, No. 4: 547 (2018); doi:10.11591/eei.v7i4.969
  18. H. Ahmed and A. Hashim, Journal of Molecular Modeling, 26: 1 (2020); doi:10.1007/s00894-020-04479-1
  19. H. Ahmed and A. Hashim, Transactions on Electrical and Electronic Materials, 22: 335 (2021); https://doi.org/10.1007/s42341-020-00244-6
  20. A. Hashim and Z. S. Hamad, Nanosistemi, Nanomateriali, Nanotehnologii, 18, No. 4: 969 (2020); https://doi.org/10.15407/nnn.18.04.969
  21. H. Ahmed and A. Hashim, Silicon, 14: 4079 (2021); https://doi.org/10.1007/s12633-021-01186-1
  22. A. Hashim and N. Hamid, Journal of Bionanoscience, 12, No. 6: 788 (2018); doi:10.1166/jbns.2018.1591
  23. I. Jeon and J. Baek, Materials, 3, No. 6: 3654 (2010); doi:10.3390/ma3063654
  24. A. Hashim and Z. S. Hamad, Journal of Bionanoscience, 12, No. 4: 488 (2018); doi:10.1166/jbns.2018.1551
  25. D. Hassan and A. Hashim, Journal of Bionanoscience, 12, No. 3: 364 (2018); doi:10.1166/jbns.2018.1537
  26. A. Hashim and Z. S. Hamad, Journal of Bionanoscience, 12, No. 4: 504 (2018); doi:10.1166/jbns.2018.1561
  27. K. H. H. Al-Attiyah, A. Hashim, and S. F. Obaid, Journal of Bionanoscience, 12: 200 (2018); doi:10.1166/jbns.2018.1526
  28. D. Hassan and A. Hashim, Journal of Bionanoscience, 12, No. 3: 341 (2018); doi:10.1166/jbns.2018.1533
  29. A. A. Abdelmalik, A. Sadiq, and U. Sadiq, J. of Physical Science, 31, No. 1: 1 (2020); https://doi.org/10.21315/jps2020.31.1.1
  30. R. Divya, M. Meena, C. K. Mahadevan, and C. M. Padma, Journal of Engi-neering Research and Applications, 4, Iss. 5: 1 (2014); https://www.researchgate.net/publication/262483892_Investigation_on_CuO_Dispersed_PVA_Polymer_Films_M_Meena
  31. T. Sankarappa and M. Prashantkumar, International Journal of Advanced Research in Physical Science, 1, No. 2: 1 (2014); https://www.arcjournals.org/pdfs/ijarps/v1-i2/1.pdf
  32. N. S. Alghunaim, Results in Physics, 9: 1136 (2018); https://doi.org/10.1016/j.rinp.2018.04.023
  33. A. Hashim, J. Mater. Sci: Mater. Electron., 32: 2796 (2021); https://doi.org/10.1007/s10854-020-05032-9
  34. N. Al-Huda Al-Aaraji, A. Hashim, A. Hadi, and H. M. Abduljalil, Silicon, 14: 4699 (2022); https://doi.org/10.1007/s12633-021-01265-3
  35. A. Hashim and Z. S. Hamad, Nanosistemi, Nanomateriali, Nanotehnologii, 20, No. 2: 507 (2022); https://doi.org/10.15407/nnn.20.02.507
  36. A. Hashim and A. Hadi, Sensor Letters, 15, No. 12: 1019 (2017); https://doi.org/10.1166/sl.2017.3910
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement