Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

Mohanad H. Meteab, Ahmed Hashim, and Bahaa H. Rabee
Synthesis and Structural Properties of (PS–PC/Co2O3–SiC) Nanocomposites for Antibacterial Applications
0451–0460 (2023)

PACS numbers: 68.37.Hk, 68.37.Vj, 81.16.Dn, 82.35.Np, 87.19.xb, 87.64.M-, 87.85.Rs

The present work aims to fabricate the polystyrene (PS)–polycarbonate (PC)/cobalt (II) oxide nanoparticles (Co2O3 NPs)–silicon carbide nanoparticles (SiC NPs) nanocomposites’ films to use in different antibacterial applications. The structural properties and antibacterial activity of (PS–PC/Co2O3–SiC) nanocomposites are studied. The structural properties include data of field emission scanning electron microscopy (FE–SEM) and optical microscopy (OM). The field emission scanning electron microscopy (FE–SEM) and optical microscopy (OM) confirm that the (Co2O3/SiC) NPs are distributed uniformly throughout the PS/PC blend. The results of antibacterial testing show that the diameter of inhibition zone increases with an increase in the (Co2O3/SiC) NPs’ content. The diameters of inhibition zones for the gram-negative bacteria (Salmonella) are bigger than the diameters of the inhibition zones for the gram-positive bacteria (Staphylococcus aureus). The final results indicate that the (PS–PC/Co2O3–SiC) nanocomposites’ films have good antibacterial activity.

Key words: silicon carbide, cobalt oxide, polystyrene–polycarbonate nanocomposites, antibacterial agent.

https://doi.org/10.15407/nnn.21.02.451

References
  1. N. P. Anh, D. H. Linh, H. T. Cuong, N. T. Van, N. M. Trung, P. N. Vi, H. X. Thuong, N. V. Minh, and N. Tri, Int. J. Pharm. Phytopharmacological Res., 10, No. 2: 88 (2020); https://doi.org/10.36103/ijas.v53i2.1555
  2. R. Mahendran, D. Sridharan, K. Santhakumar, T. A. Selvakumar, P. Rajasekar, and J. H. Jang, Indian J. Mater. Sci., 2016, No. 6: 1 (2016); https://doi.org/10.1155/2016/4169409
  3. R. M. Tripathi, R. N. Pudake, B. R. Shrivastav, and A. Shrivastav, Adv. Nat. Sci.Nanosci., 9, No. 2: 025020 (2018); https://doi.org/10.1088/2043-6254/aac4ec
  4. A. Amarjargal, L. D. Tijing, I. T. Im, and C. S. Kim, Chem. Eng. J., 226: 243 (2013); http://dx.doi.org/10.1016/j.cej.2013.04.054
  5. A. Hashim and B. Abbas, Res. J. Agric. Biol. Sci., 14, No. 3: 6 (2019); https://doi.org/10.22587/rjabs.2019.14.3.2
  6. M. Mostafa, N. G. Kandile, M. K. Mahmoud, and H. M. Ibrahim, Heliyon, 8, No. 1: e08772 (2022); https://doi.org/10.1016/j.heliyon.2022.e08772
  7. J. Wang, J. Jiang, X. Wang, R. Wang, K. Wang, S. Pang, Z. Zhong, Y. Sun, R. Ruan, and A. J. Ragauskas, J. Hazard. Mater., 386: 121970 (2020); https://doi.org/10.1016/j.jhazmat.2019.121970
  8. H. Moradpoor, M. Safaei, F. Rezaei, A. Golshah, L. Jamshidy, R. Hatam, and R. S. Abdullah, Open Access Maced. J. Med. Sci., 7, No. 17: 2757 (2019); https://doi.org/10.3889/oamjms.2019.747
  9. H. S. Suhail and B. H. Rabee, AIP Conf. Proc., 2213, Iss. 1: 020136 (2020); https://doi.org/10.1063/5.0000093
  10. S. E. Afonso Camargo, A. S. Mohiuddeen, C. Fares, J. L. Partain, P. H. Carey IV, F. Ren, S. Hsu, A. E. Clark, and J. F. Esquivel-Upshaw, J. Funct. Biomater., 11, No. 2: 33 (2020); https://doi.org/10.3390/jfb11020033
  11. N. G. Heatley, Biochem. J., 38, No. 1: 61 (1944); https://doi.org/10.1042/bj0380061
  12. M. Balouiri, M. Sadiki, and S. K. Ibnsouda, J. Pharm. Anal., 6, No. 2: 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
  13. V. N. Popok, C. M. Jeppesen, P. Fojan, A. Kuzminova, J. Hanus, and O. Kylian, Beilstein J. Nanotechnol., 9, No. 1: 861 (2018); https://doi.org/10.3762/bjnano.9.80
  14. G. Tong, M. Yulong, G. Peng, and X. Zirong, Vet. Microbiol., 105: 113 (2005); https://doi.org/10.1016/j.vetmic.2004.11.003
  15. A. Hashim and Z. S. Hamad, J. of Bionanoscience, 12, No. 4: 488 (2018); doi:10.1166/jbns.2018.1551
  16. A. Hashim and Q. Hadi, Sensor Letters, 15, No. 11: 951(2017); doi:10.1166/sl.2017.3892
  17. B. Hussien, A. Hashim, and A. Jewad, European Journal of Social Sciences, 32, No. 2: 225 (2012).
  18. H. Abduljalil, A. Hashim, and A. Jewad, European Journal of Scientific Research, 63, No. 2: 231 (2011).
  19. A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials, 31: 2483 (2021); https://doi.org/10.1007/s10904-020-01846-6
  20. A. Hashim, J. Mater. Sci.: Mater. Electron., 32: 2796 (2021); https://doi.org/10.1007/s10854-020-05032-9
  21. A. Hashim, I. R. Agool, and K. J. Kadhim, J. of Bionanoscience, 12, No. 5: 608 (2018); doi:10.1166/jbns.2018.1580
  22. A. Hazim, A. Hashim, and H. M. Abduljalil, Int. J. of Emerging Trends in Engineering Research, 7, No. 8: 68 (2019); https://doi.org/10.30534/ijeter/2019/01782019
  23. A. Hazim, H. M. Abduljalil, and A. Hashim, Int. J. of Emerging Trends in Engineering Research, 7, No. 8: 104 (2019); https://doi.org/10.30534/ijeter/2019/04782019
  24. A. Hashim, H. M. Abduljalil, and H. Ahmed, Egypt. J. Chem., 63, No. 1: 71 (2020); doi:10.21608/EJCHEM.2019.10712.1695
  25. H. Ahmed, A. Hashim, and H. M. Abduljalil, Egypt. J. Chem., 62, No. 4: 1167 (2019); doi:10.21608/EJCHEM.2019.6241.1522
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement