Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

A. P. Kusyak, N. V. Kusyak, O. I. Oranska, T. V. Kulyk, L. S. Dzubenko, B. B. Palianytsia, O. A. Dudarko, N. M. Korniichuk, A. L. Petranovska, and P. P. Gorbyk
Magnetosensitive Nanocomposite Fe3O4/Al2O3/Ñ Synthesis and Properties
0427–0449 (2023)

PACS numbers: 68.37.Lp, 75.50.Tt, 75.60.-d, 75.75.Cd, 81.70.Pg, 82.30.Lp, 82.65.+r

The processes of carbonization of sucrose-containing coatings on the surface of single-domain magnetite and magnetosensitive nanocomposite (MNC) Fe3O4/Al2O3 are studied. The MNC with a carbon surface is synthesized by the method of low-temperature pyrolysis of carbohydrates. As revealed, the used heat-treatment mode does not lead to deterioration of the magnetic characteristics of magnetite under the condition of preliminary creation of a protective layer of alumina on its surface. Differential thermal analysis (DTA) in combination with differential thermogravimetric analysis (DTGA) and programmed temperature-desorption mass spectrometry show that the carbonization of sucrose under these conditions is complete. The shape and dimensions of the Fe3O4, Fe3O4/Al2O3 and Fe3O4/Al2O3/Ñ MNCs are investigated by the TEM method. As established, the values of the specific saturation magnetization of MNCs are consistent with the corresponding changes in the mass fraction of magnetite in the Fe3O4/Al2O3 and Fe3O4/Al2O3/Ñ structures. The results of TEM studies and magnetic measurements indicate the formation of the Fe3O4/Al2O3 and Fe3O4/Al2O3/Ñ MNCs by the core–shell type. Methylene blue is used to study the adsorption activity of the Fe3O4/Al2O3/Ñ MNC surface. The results of the work can be used in the development of new magnetically controlled adsorption materials for medical–biological purposes.

Key words: magnetosensitive nanocomposites, carbon surface, pyrolysis, adsorption.

https://doi.org/10.15407/nnn.21.02.427

References
  1. S. V. Mishchenko and A. G. Tkachev, Uglerodnyye Nanomaterialy. Proizvodstvo, Svoystva, Primenenie [Carbon Nanomaterials. Production, Properties, Application] (Moskva: Mashinostroyenie: 2008), p. 320 (in Russian).
  2. Yu. I. Sementsov, Formuvannya Struktury ta Vlastyvostey sp2-Vuhletsevykh Nanomaterialiv ta Funktsionalnykh Kompozytiv za Yikh Uchastyu [Formation of Structure and Properties of sp2-Carbon Nanomaterials and Functional Composites with Their Participation] (Kyiv: Interservice: 2019), ð. 364 (in Ukrainian).
  3. O. M. Sedov, V. V. Holod, S. M. Makhno, O. M. Lisova, M. V. Abramov, S. P. Turanska et al., Metallofiz. Noveishie Tekhnol., 41: 1153 (2019) (in Ukrainian); https://doi.org/10.15407/mfint.41.09.1153
  4. P. Mierczynski, S. V. Dubkov, S. V. Bulyarskii, A. A. Pavlov, S. N. Skorik, A. Y. Trifonov et al., J. Mater. Sci. Technol., 34, No. 3: 472 (2018); https://doi.org/10.1016/j.jmst.2017.01.030
  5. S. Dubkov, I. Gavrilin, A. Dronov, A. Trifonov, A. Dudin, A. Sirotina et al., Materials Today–Proc., 5: 15943 (2018); https://doi.org/10.1016/j.matpr.2018.06.061
  6. O. M. Lisova, M. V. Abramov, S. M. Makhno, and P. P. Gorbyk, Metallofiz. Noveishie Tekhnol., 40: 625 (2018); https://doi.org/10.15407/mfint.40.05.0625
  7. P. V. Ratnikov and A. P. Silin, Physics-Uspekhi, 61, No. 12: 1139 (2018); https://doi.org/10.3367/UFNr.2017.11.0382318
  8. P. M. Sokolov, M. A. Zvaigzne, V. A. Krivenkov, A. P. Litvin, A. V. Baranov, A. V. Fedorov et al., Russ. Chem. Rev., 88: 370 (2019); http://dx.doi.org/10.1070/RCR4859
  9. M. A. Perederiy, Yu. A. Noskova, M. S. Karaseva, and P. N. Konovalov, Solid Fuel Chem., 6: 36 (2009); https://doi.org/10.3103/S0361521909060056
  10. V. G. Nikolayev, S. V. Mikhalovsky, and N. M. Gurina, Efferent Therapy, 11: 3 (2005) (in Russian).
  11. K. Yang, L. Zhu, and B. Xing, Environ. Sci. Technol., 40: 1855 (2006); https://doi.org/10.1021/es052208w
  12. Application of Enterosorption in Complex Therapy of Liver Diseases (accessed 8 November 2020); https://www.apteka.ua/article/14310
  13. V. N. Mishchenko, M. T. Kartel, V. A. Lutsenko, A. D. Nikolaichuk, N. V. Kusyak, O. M. Korduban et al., Surface, 2: 276 (2010) (in Ukrainian); http://dspace.nbuv.gov.ua/handle/123456789/39341
  14. A.-H. Lu, W.-C. Li, N. Matoussevitch, B. Spliethoff, H. Bonnemann, and F. Schuth, Chem. Commun., 1: 98 (2005); https://doi.org/10.1039/B414146F
  15. E. Kim, K. Lee, Y.-M. Huh, and S. Haam, J. Mater. Chem. B, 1: 729 (2013); https://doi.org/10.1039/C2TB00294A
  16. P. P. Gorbyk, N. V. Kusyak, A. L. Petranovskaya, E. I. Oranskaya, N. V. Abramov, and N. M. Opanashchuk, Him. Fiz. Tehnol. Poverhni, 9: 176 (2018); https://doi.org/10.15407/hftp09.02.176
  17. Y. Xu, W. E. Heberlein, M. Mahmood, A. I. Orza, A. Karmakar, Th. Mustafa et al., J. Mater. Chem., 22: 20128 (2012); https://doi.org/10.1039/C2JM32792A
  18. M. Zhu, C. Wang, D. Menga, and G. Diao, J. Mater. Chem. A, 1: 2018 (2013); https://doi.org/10.1039/C2TA00669C
  19. L. Wan, D. Yan, X. Xu, J. Li, T. Lu, Y. Gao et al., J. Mater. Chem. A, 6: 24940 (2018); https://doi.org/10.1039/C8TA06482B
  20. P. P. Gorbyk, Nanosistemi, Nanomateriali, Nanotehnologii, 11, Iss. 2: 323 (2013).
  21. P. P. Gorbyk, I. V. Dubrovin, A. L. Petranovska, M. V. Abramov, D. G. Usov, and L. P. Storozhuk, Chemical Construction of Polyfunctional Nanocomposites and Nanorobots for Medico-Biological Applications, Nanomaterials and Supramolecular Structures. Physics, Chemistry, and Applications (Eds. A. P. Shpak and P. P. Gorbyk) (Netherlands: Springer: 2009), ðð. 63–78; https://doi.org/10.1007/978-90-481-2309-4_6
  22. P. P. Gorbyk, L. B. Lerman, A. L. Petranovska, and S. P. Turanska, Magnetosensitive Nanocomposites with Functions of Medicobiological Nanorobots: Synthesis and Properties, Advances in Semiconductor Research: Physics of Nanosystems, Spintronics and Technological Applications. (Eds. D. P. Adorno and S. Pokutnyi) (New York: Nova Science Publishers: 2014), pð. 161–198.
  23. P. P. Gorbyk, L. B. Lerman, A. L. Petranovska, S. P. Turanska, Ie. V. Pylypchuk, Magnetosensitive Nanocomposites with Hierarchical Nanoarchitecture as Biomedical Nanorobots: Synthesis, Properties, and Application, Fabrication and Self-Assembly of Nanobiomaterials, Applications of Nanobiomaterials (Ed. A. Grumezescu) (Amsterdam: Elsevier: 2016), pp. 289–334.
  24. M. V. Abramov, A. P. Kusyak, O. M. Kaminskiy, S. P. Turanska, A. L. Petranovska, N. V. Kusyak et al., Horiz. in World Phys., 293: 1 (2017).
  25. M. V. Abramov, S. P. Turanska, and P. P. Gorbyk, Metallofiz. Noveishie Tekhnol., 40: 423 (2018); https://doi.org/10.15407/mfint.40.04.0423
  26. M. V. Abramov, S. P. Turanska, and P. P. Gorbyk, Metallofiz. Noveishie Tekhnol., 40: 1283 (2018); https://doi.org/10.15407/mfint.40.10.1283
  27. A. L. Petranovska, N. V. Abramov, S. P. Turanska, P. P. Gorbyk, A. N. Kaminskiy, and N. V. Kusyak, J. Nanostruct. Chem., 5: 275 (2015); https://doi.org/10.1007/s40097-015-0159-9
  28. Ì. V. Abramov, À. L. Petranovska, N. V. Kusyak, À. P. Kusyak, N. Ì. Opanashchuk, S. P. Turanska et al., Funct. Mater., 27, No. 2: 283 (2020); https://doi.org/10.15407/fm27.02.283
  29. N. V. Abramov, S. P. Turanska, A. P. Kusyak, A. L. Petranovska, and P. P. Gorbyk, J. Nanostruct. Chem., 6: 223 (2016); https://doi.org/10.1007/s40097-016-0196-z
  30. P. P. Gorbyk, Him. Fiz. Tehnol. Poverhni, 11, No. 1: 128 (2020); https://doi.org/10.15407/hftp11.01.128
  31. R. Zhang and H. Olin, Mater. Sci. Eng. C, 32: 1247 (2012); https://doi.org/10.1016/j.msec.2012.03.016
  32. M. V. Abramov, S. P. Turans’ka, and P. P. Gorbyk, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 3: 505 (2020) (in Ukrainian); https://doi.org/10.15407/nnn.18.03.505
  33. T. Sakaki, M. Shibata, T. Miki, H. Hirosue, and N. Hayashi, Bioresource Technol., 58: 197 (1996); https://doi.org/10.1016/S0960-8524(96)00099-5
  34. G.-Y. Mao, W.-J. Yang, F.-X. Bu, D.-M. Jiang, Z.-J. Zhao, Q.-H. Zhang et al., J. Mater. Chem. B, 2: 4481 (2014); https://doi.org/10.1039/C4TB00394B
  35. L. Qu, T. Han, Z. Luo, C. Liu, Y. Mei, and T. Zhu, J. Phys. Chem. Solids, 78: 20 (2015); https://doi.org/10.1016/j.jpcs.2014.10.019
  36. T. Sakaki, M. Shibata, T. Miki, H. Hirosue, and N. Hayashi, Bioresource Technol., 58, No. 2: 197 (1996); https://doi.org/10.1016/S0960-8524(96)00099-5
  37. S. Liang, K. Chen, J. Han, and B. Wu, Mater. Sci. Eng., 562: 12022 (2019); https://doi.org/10.1088/1757-899X/562/1/012022
  38. P. Wang, M. Gao, H. Pan, J. Zhang, C. Liang, J. Wang et al., J. Power Sources., 239: 466 (2013); https://doi.org/10.1016/j.jpowsour.2013.03.073
  39. P. Selwood, Magnetochemistry Access mode: by Subscription (accessed 08 November 2020); https://biblioclub.ru/index.php?page=book&id=213957
  40. A. L. Petranovska, D. G. Usov, M. V. Abramov, Yu. O. Demchenko, and Î. Ì. Corduban, Him. Fiz. Tehnol. Poverhni, 13: 310 (2007); http://dspace.nbuv.gov.ua/handle/123456789/146644
  41. T. Kulik, B. Palianytsia, and M. Larsson, Catalysts, 10, No. 2: 1 (2020); https://doi.org/10.3390/catal10020179
  42. K. Kulyk, B. Palianytsia, J. D. Alexander, L. Azizova, M. Borysenko, M. Kartel et al., Chem. Phys. Chem., 18, No. 14: 1943 (2017); https://doi.org/10.1002/cphc.201601370
  43. S. Nanda, P. Mohanty, J. A. Kozinski, and A. K. Dalai, Energy Environ. Res., 4, No. 3: 21 (2014); https://doi.org/10.5539/eer.v4n3p21
  44. T. Kulyk, Polym. J., 40: 166 (2018) (in Ukrainian); https://doi.org/10.15407/polymerj.40.03.166
  45. L. S. Semko, P. P. Gorbyk, L. P. Storozhuk, A. M. Korduban, and L. S. Dzyubenko, Him. Fiz. Tehnol. Poverhni, 13: 370 (2007).
  46. A. M. Abyzov, New Refractories, 1: 16 (2019); http://dx.doi.org/10.17073/1683-4518-2019-1-16-23
  47. Alumina and Its Modifications (accessed 11 November 2020); https://liv-unikon.com.ua/ru/glynozem-y-ego-modyfykatsyy.html
  48. J. P. Simonin and J. Boute, Rev. Mex. Ing. Quim., 15, No. 1: 161 (2016).
  49. Y. S. Ho, J. C. Y. Ng, and G. McKay, Separ. Purif. Method, 29, No. 2: 189 (2000); https://doi.org/10.1081/SPM-100100009
  50. S. Douven, C. A. Paez, and C. J. Gommes, J. Colloid. Interface Sci., 448: 437 (2015); https://doi.org/10.1016/j.jcis.2015.02.053
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement