Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

O. A. Kovalenko, O. V. Shyrokov, V. G. Kolesnichenko, and A. V. Ragulya
The Control of the Structure and Size of the Barium Titanate Nanoparticles Prepared by the Oxalate Method
0413–0426 (2023)

PACS numbers: 68.37.Hk, 68.37.Vj, 81.07.Wx, 81.16.Be, 81.20.Ka, 81.70.Pg, 82.60.Hc

In this paper, the effect of the precipitation conditions and phase composition of the precursor on the mechanism of decomposition of intermediate compounds and the characteristics of the final product is shown. The stoichiometric barium titanate can be obtained from pure oxalate under concentration of 1.5 M and pH = 1. When composition is deviated from the stoichiometry, the final temperature of organic-precursor decomposition is increased above 720°C due to the multiphase-system formation. The crystallites formed during the thermal decomposition of precursors based on a multiphase system have smaller sizes (< 26 nm) compared to the decomposition product of pure oxalate (32–34 nm) due to the hydroxide and carbonate formation. At a concentration of 1.5 M, the decomposition of barium titanyl oxalate occurs due to the formation of intermediate oxycarbonates, rather than due to the oxidation of the precursor to barium carbonate and titanium dioxide. Applying nonisothermal mode for the calcination of the stoichiometric barium titanate allows the domination of the nucleation over the crystal growth resulting in the formation of monodisperse barium titanate with the crystallite and particle sizes of 22 nm and 25 nm, respectively. We suggest that the obtained results can be useful for the facile preparation of nanocrystalline stoichiometric barium titanate particles with desirable composition and size.

Key words: barium titanate, stoichiometry, precipitation, nanoparticle, thermal decomposition, crystallization.

https://doi.org/10.15407/nnn.21.02.413

References
  1. S. B. Basturk, C. E. J. Dancer, and T. McNally, J. Appl. Polym. Sci., 138, No. 22: 50521 (2021); https://doi.org/10.1002/app.50521
  2. J. Chen, X. Liu, Z. Shen, and G. Chu, High-Gravity Reactive Precipitation Process for the Preparation of Barium Titanate Powders: Patent US 8715614, US10/624,944 (2014).
  3. P. Kumar, S. Singh, M. Spah, J. K. Juneja, C. Prakash, and K.K. Raina, J. Alloys Compd., 489: 59 (2010); https://doi.org/10.1016/j.jallcom.2009.08.024
  4. G. Panomsuwan and H. Manuspiya, Mater. Res. Express, 6, No. 6: 065062 (2019); https://doi.org/10.1088/2053-1591/ab101b
  5. A. Shi, J. Cent. South Univ. Technol., 15, No. 3: 334 (2008); https://doi.org/10.1007/s11771-008-0063-2
  6. K. M. Hung, W. D. Yang, and C. C. Huang, J. Eur. Ceram. Soc., 23: 1901 (2003); https://doi.org/10.1016/S0955-2219(02)00431-4
  7. H. Xu and L. Gao, Mater. Lett., 57, No. 2: 490 (2002); https://doi.org/10.1016/S0167-577X(02)00817-0
  8. L. Guo, H. Luo, J. Gao, L. Guo, and J. Yang, J. Mater. Lett., 60, No. 24: 3011 (2006); https://doi.org/10.1016/j.matlet.2006.02.035
  9. W. S. Clabaugh, E. M. Swiggard, and R. Gilchrist, J. Res. Natl. Bur. Stand., 56, No. 5: 1 (1956).
  10. R. A. Kimel, V. Ganine, and J. H. Adair, J. Am. Ceram. Soc., 84: 1172 (2001); https://doi.org/10.1111/j.1151-2916.2001.tb00809.x
  11. S. Wada, T. Hoshina, H. Yasuno, S. M. Nam, H. Kakemoto, and T. Tsurumi, Key Eng. Mater., 248: 19 (2003); https://doi.org/10.4028/www.scientific.net/KEM.248.19
  12. C. J. Huang, K. L. Chen, P. H. Chiu, P. W. Sze, and Y. H. Wang, J. Nanomater., Article ID 718918 (2014); https://doi.org/10.1155/2014/718918
  13. G. K. Sahoo, Synthesis and Characterization of Zr and Ca Modified BaTiO3 Ferroelectric Ceramics (Doctoral dissertation) (2015).
  14. 노태용;김승원;이철; Bull. Korean Chem. Soc., 16: 1180 (1995); https://doi.org/10.5012/bkcs.1995.16.12.1180
  15. A. V. Prasadarao, M. Suresh, and S. Komarneni, Mater. Lett., 39, No. 6: 359 (1999); https://doi.org/10.1016/S0167-577X(99)00035-X
  16. C. Szepesi, Synthesis and Processing of Submicron Barium Titanyl Oxalate Tetrahydrate (Doctoral dissertation) (Penn. State Univ.: 2004).
  17. F. Schrey, J. Am. Ceram. Soc., 48, No. 8: 401 (1965); https://doi.org/10.1111/j.1151-2916.1965.tb14776.x
  18. J. E. Jeon, H. S. Han, K. R. Park, Y. R. Hong, K. Bo Shim, and S. Mhin, Ceram. Int., 44: 1420 (2018); https://doi.org/10.1016/j.ceramint.2017.09.231
  19. V. M. Pogibko, V. V. Prisedskiy, and I. L. Sidak, Voprosy Khimii i Khimicheskoi Tekhnologii [Issues of Chemistry and Chemical Technology], p. 96 (2010).
  20. P. K. Gallagher and J. Thomson, J. Am. Ceram. Soc., 48: 644 (1965); https://doi.org/10.1111/j.1151-2916.1965.tb14697.x
  21. O. O. Vasyl’kiv, A. V. Ragulya, and V. V. Skorokhod, Powder Metall. Met. Ceram., 36, No. 5: 277 (1997); https://doi.org/10.1007/BF02676217
  22. O. O. Vasyl’kiv, A. V. Ragulya, V. P. Klimenko, and V. V. Skorokhod, Powder Metall. Met. Ceram., 36, No. 11: 575 (1997); https://doi.org/10.1007/BF02676141
  23. W. S. Jung, B. K. Min, J. Park, and D. H. Yoon, Ceram. Int., 37: 669 (2011); https://doi.org/10.1016/j.ceramint.2010.09.056
  24. A. V. Ragulya, O. O. Vasyl’kiv, and V. V. Skorokhod, Powder Metall. Met. Ceram., 36, No. 3: 170 (1997); https://doi.org/10.1007/BF02676084
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement