Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

T. F. Samoilenko, L. M. Yashchenko, N. V. Yarova, L. O. Vorontsova, V. I. Shtompel, and O. O. Brovko
Impact of Accelerated Ageing on the Properties of Optically Transparent Nanostructured Ti-Containing Epoxyurethane
0313–0329 (2023)

PACS numbers: 42.70.Km, 61.05.cp, 78.30.Jw, 78.67.Sc, 81.07.Pr, 81.20.Fw, 81.70.Pg

Organic–inorganic hybrid materials are synthesized on the base of anhydride-cured epoxyurethane polymer matrix with an ultra-low content of poly(titanium oxide) nanoparticles (0.005 and 0.020 wt.% for TiO2) obtained in situ by the sol–gel method in polyoxypropylene glycol medium. The structure of the formed optically transparent samples was confirmed by the methods of optical microscopy and wide-angle x-ray scattering. As shown, TiO2 reveals itself as an amorphous phase and does not form aggregates of large size (> 200 nm). The behaviour of the neat epoxyurethane and of titanium-containing ones is studied under artificially accelerated weathering conditions in a climate chamber. The changes in the properties of films after exposure to UV radiation, elevated temperature and relative humidity are investigated by the methods of IR spectroscopy, hydrostatic weighting, differential scanning calorimetry, thermogravimetric analysis, and spectrophotometry. As found, under the influence of such climatic factors, the chemical structure of the samples changes insignificantly that proves their atmospheric stability. The increase in density and initial temperatures of thermal decomposition as well as the decrease in the increment of heat capacity (ΔCp) of epoxyurethanes indicate the proceeding of cross-linking reactions via condensation of hydroxyl groups in the conditions of the climate chamber, which lead to the formation of a denser structure. After accelerated weathering test, the optical transmission coefficient of all the samples diminishes slightly, but the loss of transparency decreases with increasing content of poly(titanium oxide) (18.2% for the neat epoxyurethane polymer and 11.6% for the sample with 0.020 wt.% TiO2). In general, modified epoxyurethanes have a higher resistance to degradation compared to the unmodified ones that is an evidence of the exhibiting of the UV-shielding properties of TiO2 and the simultaneous absence of its photocatalytic activity, which, on the contrary, would provoke the destruction of the polymer matrix under UV-irradiation.

Key words: epoxyurethanes, poly(titanium oxide), sol–gel synthesis, accelerated weathering, UV shielding, photocatalytic activity.

https://doi.org/10.15407/nnn.21.02.313

References
  1. S. Li, M. Meng Lin, M. S. Toprak, D. K. Kim, and M. Muhammed, Nano Rev., 1, No. 1: 5214 (2010); https://doi.org/10.3402/nano.v1i0.5214
  2. X. Guo, W. Hou, W. Ding, Y. Fan, Q. Yan, and Y. Chen, Inorg. Chem. Commun., 7, No. 8: 946 (2004); https://doi.org/10.1016/j.inoche.2004.05.018
  3. C. Sanchez, B. Julian, P. Belleville, and M. Popall, J. Mat. Chem., 15, Nos. 35–36: 3559 (2005); https://doi.org/10.1039/B509097K
  4. D. Blanc, A. Last, J. Franc, S. Pavan, and J.-L. Loubet, Thin Solid Films, 15, No. 3: 942 (2006); https://doi.org/10.1016/j.tsf.2006.07.177
  5. L. K. Massey, The Effects of UV Light and Weather on Plastics and Elastomers (Ed. W. Andrew) (New York: Norwich: 2007), vol. II.
  6. A. Copinet, C. Bertrand, S. Govindin, V. Coma, and Y. Couturier, Chemosphere, 55, No. 5: 763 (2004); https://doi.org/10.1016/j.chemosphere.2003.11.038
  7. E. Tang, G. Cheng, and X. Ma, Powder Technol., 161, No. 3: 209 (2006); https://doi.org/10.1016/j.powtec.2005.10.007
  8. F. Bondioli, M. E. Darecchio, A. S. Luyt, and M. Vessori, J. Appl. Polym. Sci., 122, No. 3: 1792 (2011); https://doi.org/10.1002/app.34264
  9. X. Xiao and C. Hao, Colloid. Surf. A. Physicochem. Eng. Asp., 359, Nos. 1–3: 82 (2010); https://doi.org/10.1016/j.colsurfa.2010.01.067
  10. V. da Silva, L. dos Santos, S. M. Subda, R. Ligabue, M. Seferin, C. L. Carone, and S. Einloft, Polym. Bull., 70, No. 6: 1819 (2013); https://doi.org/10.1007/s00289-013-0927-y
  11. Z. Altıntaş, E. Çakmakçı, M. V. Kahraman, N. K. Apohan, and A. J. Güngür, Sol–Gel Sci. Technol., 58, No. 3: 612 (2011); https://doi.org/10.1007/s10971-011-2435-6
  12. M. Zahornyi, O. Lavrynenko, N. Tyschenko, M. Skoryk, A. Kasumov, O. Kornienko, and A. Ievtushenko, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 4: 967 (2021) (in Ukrainian); https://doi.org/10.15407/nnn.19.04.967
  13. J. Xiao, W. Chen, F. Wang, and J. Du, Macromolecules, 46, No. 2: 375 (2013); https://doi.org/10.1021/ma3022019
  14. S. Watson, D. Beydoun, J. Scott, and R. Amal, J. Nanoparticle Res., 6, No. 2: 193 (2004); https://doi.org/10.1023/B:NANO.0000034623.33083.71
  15. A. N. Banerjee, Nanotechnol. Sci. Appl., 4: 35 (2011); https://doi.org/10.2147/NSA.S9040
  16. V. F. Matyushov, A. L. Tolstov, O. V. Gres, and P. S. Yaremov, Theor. Exp. Chem., 54: 46 (2018); https://doi.org/10.1007/s11237-018-9544-z
  17. N. J. Kim, Y. H. La, S. H. Im, and B. K. Ryu, Thin Solid Films, 518, No24: e156 (2010); https://doi.org/10.1016/j.tsf.2010.03.093
  18. D. Pinto, L. Bernardo, A. Amaro, and S. Lopes, Constr. Build. Mater., 95, No. 1: 506 (2015); https://doi.org/10.1016/j.conbuildmat.2015.07.124
  19. P. K. Ghosh, A. Pathak, M. S. Goyat, and S. Halder, J. Reinf. Plast. Comp., 31, No. 17: 1180 (2012); https://doi.org/10.1177/0731684412455955
  20. M. G. Mizilevska, V. O. Kotsyubynsky, A. B. Hrubiak, and O. H. Tadeush, Naukovy Visnyk Chernivetskogo Universitetu: Fizyka. Elektronika, 4, No. 1: 35 (2015) (in Ukrainian).
  21. X. Chen and S. S. Mao, Chem. Rev., 107, No. 7: 2891 (2007); https://doi.org/10.1021/cr0500535
  22. Y. Cao, P. Xu, P. Lv, P. J. Lemstra, X. Cai, W. Yang, W. Dong, M. Chen, T. Liu, M. Du, and P. Ma, ACS Appl. Mater. Interfaces, 12, No. 43: 49090 (2020); https://doi.org/10.1021/acsami.0c14423
  23. M. M. Aslzadeh, M. Abdouss, A. M. Shoushtari, and F. Ghanbari, J. Appl. Polym. Sci., 133, No. 46: 44148 (2016); https://doi.org/10.1002/app.44148
  24. M. Wiśniewski and K. Roszek, Int. J. Mol. Sci., 23, No. 5: 2460 (2022); https://doi.org/10.3390/ijms23052460
  25. Z. Altuntas, E. C. Akmakc, M. N. K. Apohan, and A. Gungor, J. Sol–Gel Sci. Technol., 58, No. 3: 612 (2011); https://doi.org/10.1007/s10971-011-2435-6
  26. S. Karatas, C. Kizłlkaya, N. Kayaman-Apohan, and A. Gungor, Prog. Org. Coat., 60, No. 2: 140 (2007); https://doi.org/10.1016/j.porgcoat.2007.07.010
  27. D. Wang and G. P. Bierwagen, Prog. Org. Coat., 64, No. 4: 327 (2009); https://doi.org/10.1016/j.porgcoat.2008.08.010
  28. T. Alekseeva, N. Kozak, and V. Shtompel, Opt. Mater., 98: 109493 (2019); https://doi.org/10.1016/j.optmat.2019.109493
  29. L. M. Yashchenko, L. O. Vorontsova, T. T. Alekseeva, T. V. Tsebrienko, L. P. Steblenko, A. M. Kuryliuk, and O. O. Brovko, Nanosistemi, Nanomateriali, Nanotehnologii, 17, No. 4: 747 (2019) (in Ukrainian); https://doi.org/10.15407/nnn.17.04.747
  30. L. M. Yashchenko, L. O. Vorontsova, and O. O. Brovko, Sposib Oderzhannya Kompozytsiyi dlya Zakhysnoho Optychno Prozoroho Pokryttya [Method of Obtaining a Formulation for a Protective Optically Transparent Coating]: Patent 122605 UA. MKI, C2 (Publ. December 10, 2020) (in Ukrainian).
  31. L. C. Sawyer, D. T. Grubb, and G. F. Meyers, Polymer Microscopy (New York: Springer Science & Business Media: 2008), vol. III.
  32. N. Y. Turova, E. P. Turevskaya, V. G. Kessler, and M. I. Yanovskaya, The Chemistry of Metal Alkoxides (Boston: Kluwer Academic Publishers: 2002).
  33. Y. F. You, C. H. Xu, S. S. Xu, S. Cao, J. P. Wang, Y. B. Huang, and S. Q. Shi, Ceram. Int., 40, No. 6: 8659 (2014); https://doi.org/10.1016/j.ceramint.2014.01.083
  34. F. Z. Haque, R. Nandanwar, and P. Singh, Optik, 128: 191 (2017); https://doi.org/10.1016/j.ijleo.2016.10.025
  35. C. J. Brinker and A. J. Hurd, J. Phys. III, 4, No. 7: 1231 (1994); https://doi.org/10.1051/jp3:1994198
  36. M. Langlet, M. Burgos, C. Coutier, C. Jimenez, C. Morant, and M. Manso, J. Sol–Gel Sci. Techn., 22, Nos. 1–2: 139 (2001); https://doi.org/10.1023/A:1011232807842
  37. Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, Mater. Des., 47: 424 (2013); https://doi.org/10.1016/j.matdes.2012.11.025
  38. T. A. Nizina, Zashchitno-Dekorativnyye Pokrytiya na Osnove Ehpoksidnykh i Akrilovykh Svyazuyushchikh [Protective and Decorative Coatings Based on Epoxy and Acrylic Binders] (Saint-Petersburg, Russian Federation: Mordovia University Publishing: 2007) (in Russian).
  39. V. P. Selyaev, T. A. Nizina, and Yu. A. Lankina, Mordovia University Bulletin, 4: 128 (2008) (in Russian).
  40. M. Brebu, Polymers, 12, No. 166: 1 (2020); https://doi:10.3390/polym12010166
  41. S. Dixit and P. Verma, Am. J. Polym. Sci. Eng., 1, No. 1: 201400227 (2014).
  42. R. E. Van de Leest, Appl. Surf. Sci., 86, Nos. 1–4: 278 (1995); https://doi.org/10.1016/0169-4332(94)00398-X
  43. T. T. Alekseeva, N. V. Yarovaya, and A. N. Gorbatenko, Ukr. Khim. Zh., 81, No. 9: 60 (2015) (in Russian).
  44. A. Nageswara, P. Sudher, and V. Brahman, J. Polymer Mater., 27, No. 1: 87 (2010).
  45. L. N. Yashchenko, T. T. Todosiychuk, K. V. Zapunnaya, and G. N. Krivchenko, Polimernyi Zhurnal, 29, No. 4: 253 (2007) (in Russian).
  46. O. Kameneva, A. I. Kuznetsov, L. A. Smirnova, L. Rozes, C. Sanchez, A. Alexandrov, N. Bityurin, K. Chhor, and A. Kanaev, J. Mater. Chem., 33, No. 15: 3380 (2005); https://doi.org/10.1039/B507305G
  47. I. Stefanović, J. Dostanić, D. Lončarević, D. Vasiljević-Radović, S. Ostojić, S. B. Marković, and M. Pergal, Hem. Ind., 73, No. 1: 13 (2019); https://doi.org/10.2298/HEMIND180530002S
  48. A. Tarek, T. Hajime, and T. Tsutomu, Polymer, 45, No. 23: 7903 (2004); https://doi.org/10.1016/j.polymer.2004.09.022
  49. Z. Zhang, C. C.Wang, R. Zakaria, and J. Y. Ying, J. of Phys. Chem. B, 102, No. 52: 10871 (1998); https://doi.org/10.1021/jp982948+
  50. V. A. Lebedev, D. A. Kozlov, I. V. Kolesnik, A. S. Poluboyarinov, A. E. Becerikli, W. Grünert, and A. V. Garshev, Appl. Catal. B-Environ., 195, No. 15: 39 (2016); https://doi.org/10.1016/j.apcatb.2016.05.010
  51. A. Michael, Surf. Sci. Rep., 66, No. 67: 185 (2011).
  52. B. Ohtani, Y. Ogawa, and S. Nishimoto, J. Phys. Chem. B, 101, No. 19: 3746 (1997); https://doi.org/10.1021/jp962702+
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement