Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

Majeed Ali Habeeb and Zanab Ibrahim Zike
Evaluation of Structural and Optical Properties of PVA/Fe2O3 Nanostructures for Photonic Devices
0301–0311 (2023)

PACS numbers: 42.70.Qs, 78.20.Ci, 78.40.-q, 78.66.Sq, 78.67.Sc, 81.07.Pr, 82.35.Np

The PVA/Fe2O3 nanocomposites are formed using a solution casting method with varying weight percentages of Fe2O3 nanoparticles: 0, 2, 4, and 6 wt.%. The optical microscopy and optical properties for films are studied; the results reveal that the nanoparticles form a continuous network in films of polyvinyl alcohol (PVA); the nanoparticles are linked in this network including routes for charge carriers to travel through it, causing a shift in the material properties. The findings reveal that, as the concentration of Fe2O3 nanoparticles rises, the absorbance, absorption coefficient, extinction coefficient, refractive index, real and imaginary dielectric constants and optical conductivity are increasing. The optical energy gap for PVA is reduced from 4.4 eV for pure PVA to 3.7 eV when Fe2O3 nanoparticles’ concentration reaches 6 wt.%. This behaviour makes it suitable for variety optical approaches. The transmittance drops as the concentration of Fe2O3 nanoparticles increases.

Key words: polyvinyl alcohol, iron oxide nanoparticles, nanocomposites, optical characteristics.

https://doi.org/10.15407/nnn.21.02.301

References
  1. S. L. Jangra, K. Stalin, N. Dilbaghi, S. Kumar, J. Tawale, Surinder P. Singh, and Renu Pasricha, Journal of Nanoscience and Nanotechnology, 12: 7105 (2012).
  2. B. S. Mudigoudra, S. P. Masti, and R. B. Chougale, Research Journal of Recent Sciences, 1, Iss. 9: 83 (2012); http://www.isca.me/rjrs/archive/v1/i9/15.ISCA-RJRS-2012-235.pdf
  3. M. Ghanipour and D. Dorranian, J. Nanomater., 2013: 10 (2013).
  4. K. M. Wadi, Al-Mustansiriyah J. Sci., 28, No. 1: 150 (2017).
  5. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63, No. 2: 611 (2020); https://dx.doi.org/10.21608/ejchem.2019.10197.1669
  6. Sagadevan Suresh, American Chemical Science Journal, 3, No. 3: 325 (2013); doi:10.9734/ACSJ/2013/3503
  7. Debashish Nayak and Ram Bilash Choudhary, Optical Materials, 91: 470 (2019).
  8. N. Hayder, M. A. Habeeb, and A. Hashim, Egyptian Journal of Chemistry, 63: 577 (2020); doi:10.21608/ejchem.2019.14646.1887
  9. T. S. Soliman and S.A. Vshivkov, J. Non-Cryst. Solids, 519: 119452 (2019); https://doi.org/10.1016/j.jnoncrysol.2019.05.028
  10. T. Siddaiah, P. Ojha, N.O. Kumar, and C. Ramu, Mater. Res., 21, No. 5: 321 (2018).
  11. M. Ghanipour and D. Dorranian, Journal of Nanomaterials, 2013: (2013); https://doi.org/10.1155/2013/897043
  12. Q. M. Jebur, A. Hashim, and M. A. Habeeb, Egyptian Journal of Chemistry, 63: 719 (2020); https://dx.doi.org/10.21608/ejchem.2019.14847.1900
  13. C. Uma Devi, A. K. Sharma, and V. V. R. N. Rao, Materials Letters, 56, No. 3: 167 (2002); https://doi.org/10.1016/S0167-577X(02)00434-2
  14. V. Ghorbani, M. Ghanipour, D. Dorranian, Opt. Quant. Electron, 48: 61 (2016); https://doi.org/10.1007/s11082-015-0335-7
  15. S. Kramadhati and K. Thyagarajan, Int. Journal of Engineering Research and Development, 6, No. 8: 167 (2013).
  16. M. A. Habeeb, A. Hashim, and N. Hayder, Egyptian Journal of Chemistry, 63: 709 (2020); https://dx.doi.org/10.21608/ejchem.2019.13333.1832
  17. M. Aronniemi, J. Lahtinen, and P. Hautojarvi, Surf. Interface Anal., 36, No. 8: 1004 (2004).
  18. M. Chirita, I. Grozescu, L. Taubert, H. Radulescu, and E. Princz, Chem. Bull., 54, No. 68: 1 (2009).
  19. M. Ghanipour and D. Dorranian, Journal of Nanomaterials, 2013: Article ID 897043; https://doi.org/10.1155/2013/897043
  20. A. Hashim, M. A. Habeeb, and Q. M. Jebur, Egyptian Journal of Chemistry, 63: 735 (2020); https://dx.doi.org/10.21608/ejchem.2019.14849.1901
  21. V. M. Mohan, P. B. Bhargav, V. Raja, A. K. Sharma, and V. V. R. Narasimha Rao, Soft Mater., 5, Iss. 1: 33 (2007); doi:10.1080/15394450701405291
  22. S. Kramadhati and K. Thyagarajan, Int. Journal of Engineering Research and Development, 6, No. 8: 233 (2013).
  23. M. A. Habeeb, Journal of Engineering and Applied Sciences, 9, No. 4: 102 (2014); doi:10.36478/jeasci.2014.102.108
  24. A. Choudhary, J. Phys. Chem. Solids, 121: 196 (2018); doi:10.1016/j.jpcs.2018.05.017
  25. R. Tintu, K. Saurav, K. Sulakshna, V. P. N. Nampoori, P. Radhakrishnan, and S. Thomas, J. Non-Oxide Glas., 2, No. 4: 167 (2010); https://www.chalcogen.ro/167_Tintu.pdf
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement