Issues

 / 

2023

 / 

vol. 21 / 

Issue 2

 



Download the full version of the article (in PDF format)

Huda Bukheet Hassan, Hayder M. Abduljalil, and Ahmed Hashim
Design of PEO/NiO/In2O3 Structures and Tailoring the Optical and Electronic Characteristics for Electronic Devices
0289–0299 (2023)

PACS numbers: 71.15.Mb, 71.15.Nc, 78.20.Ci, 78.30.-j, 78.40.-q, 78.67.Sc, 82.35.Np

In present work, the new PEO/NiO/In2O3 structures are designed to be employed in various optical and electronic approaches. The structural, optical, and electronic characteristics of new PEO/NiO/In2O3 structures are studied. The effect of increasing the number of atoms on the geometrical, electrical, and spectral features of PEO/NiO/In2O3 structures is investigated using the Gaussian 0.9 software and Gaussian View 0.5, as well as density functional theory (SDD basis set) for the geometrical, electronic, and spectroscopic properties of PEO/NiO/In2O3 (with 85 atoms). Improved geometrical optimization is done for the geometrical features (bonds and angles). In addition to spectrum qualities, electronic properties include ionization potential, electron affinity, chemical hardness, chemical softness, electronegativity, total energy, energy gap, electrophilicity as well as the IR and UV-visible spectra. When the number of atoms in the investigated structure is increased, it has a direct effect on all of its attributes. Finally, acquired results for the new PEO/NiO/In2O3 structures show that they can be used in a variety of modern applications.

Key words: poly(ethylene oxide), metal oxide, nanocomposites, optical properties, electronic devices.

https://doi.org/10.15407/nnn.21.02.289

References
  1. A. D. de Oliveira and C. A. G. Beatrice, Nanocomposites-Recent Evolutions (IntechOpen: 2018), Ch. 6, p. 106; http://dx.doi.org/10.5772/intechopen.8132
  2. Y. Zare, H. Garmabi, and K. Y. Rhee, Composites Pt. B: Engineering, 144: 1 (2018); https://doi.org/10.1016/j.compositesb.2018.02.024
  3. M. O. Farea, A. M. Abdelghany, and A. H. Oraby, RSC Advances, 10, No. 62: 37621 (2020).
  4. M. T. Ramesan and V. Santhi, Composite Interfaces, 25, No. 8: 725 (2018).
  5. Y. Xie and X. Sha, Synthetic Metals, 237: 29 (2018); https://doi.org/10.1016/j.synthmet.2018.01.011
  6. A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials, 30, No. 10: 3894 (2020); https://doi.org/10.1007/s10904-020-01528-3
  7. M. Oftadeh, S. Naseh, and M. Hamadanian, Computational and Theoretical Chemistry, 966, Nos. 1–3: 20 (2011).
  8. W. J. Hehre, L. Radom, P. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (New York: Wiley–Interscience 1986).
  9. P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics (Oxford University Press: 2010).
  10. F. L. Riley, Journal of the American Ceramic Society, 83, No. 2: 245 (2000).
  11. D. Young, A Practical Guide for Applying Techniques to Real World Problems (Wiley: 2001).
  12. J. Kohanoff and N. I. Gidopoulos, Handbook of Molecular Physics and Quantum Chemistry (2003), vol. 2 (pt. 5), p. 532.
  13. K. Sadasivam and R. Kumaresan, Computational and Theoretical Chemistry, 963, No. 1: 227 (2011).
  14. A. J. Camargo, K. M. Honório, R. Mercadante, F. A. Molfetta, C. N. Alves, and A. B. da Silva, Journal of the Brazilian Chemical Society, 14, No. 5: 809 (2003).
  15. P. Udhayakala and T. V. Rajendiran, Journal of Chemical, Biological and Physical Sciences, 2, No. 1: 172 (2011).
  16. J. Chen, X. Wu, and A. Selloni, Phys. Rev. B, 83, No. 24: 245204 (2011).
  17. F. Creazzo, D. R. Galimberti, S. Pezzotti, and M. P. Gaigeot, J. Chem. Phys., 150, No. 4: 041721 86(2019).
  18. M. Yu, C. S. Jayanthi, and S. Y. Wu, arXiv preprint arXiv:0901.3567: 1 (2009).
  19. P. Atkins and J. De Paula, Physical Chemistry for the Life Sciences (USA: Oxford University Press: 2011).
  20. J. M. Ramosa, M. C. Maur?cio, C. C. Anilton Jr., V. Otavio, and A. T. S. Claudio, Science Asia, 37: 247 (2011).
  21. R. T. Rasheed, S. D. Al-Algawi, and S. Z. Tariq, Iraqi Journal of Applied Physics, 10, No. 4: 15 (2014).
  22. A. Hashim and Z. S. Hamad, Egypt. J. Chem., 63, No. 2: 461 (2020); doi:10.21608/EJCHEM.2019.7264.1593
  23. A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials, 31: 2483 (2021); https://doi.org/10.1007/s10904-020-01846-6
  24. H. Ahmed, A. Hashim, and H. M. Abduljalil, Ukr. J. Phys., 65, No. 6: 533 (2020); https://doi.org/10.15407/ujpe65.6.533
  25. F. L. Rashid, A. Hashim, M. A. Habeeb, S. R. Salman, and H. Ahmed, Journal of Engineering and Applied Sciences, 8, No. 5: 137 (2013).
  26. A. Hashim, Opt. Quant. Electron., 53: 1 (2021); https://doi.org/10.1007/s11082-021-03100-w
  27. H. Ahmed and A. Hashim, Transactions on Electrical and Electronic Materials, 22: 335 (2021); https://doi.org/10.1007/s42341-020-00244-6
  28. A. Hazim, H. M. Abduljalil, and A. Hashim, Transactions on Electrical and Electronic Materials, 21: 550 (2020); https://doi.org/10.1007/s42341-020-00210-2
  29. A. Hazim, A. Hashim, and H. M. Abduljalil, Trans. Electr. Electron. Mater., 21: 48 (2019); https://doi.org/10.1007/s42341-019-00148-0
  30. A. Hazim, H. M. Abduljalil, and A. Hashim, Trans. Electr. Electron. Mater., 22: 851(2021); https://doi.org/10.1007/s42341-021-00308-1
  31. A. Hazim, H. M. Abduljalil, and A. Hashim, Transactions on Electrical and Electronic Materials, 22: 185 (2021); https://doi.org/10.1007/s42341-020-00224-w
  32. L. H. Gaabour, Optics and Photonics Journal, 10: 197 (2020); doi:10.4236/opj.2020.108021
.
Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement