Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

Soliman Soliman, Ali Soliman, Khalid Alzoubar, Joumaa Merza, and Ali Alasmi
Systematic Review on Thiazole Compounds as Nanoparticles: Chemistry, Synthesis, Antimicrobial Activities, Therapeutic Investigation
0209–0232 (2023)

PACS numbers: 81.16.Be, 87.19.xb, 87.19.xd, 87.19.xe, 87.19.xg, 87.19.xj, 87.19.xr

1.3-thiazole is a unique heterocycle containing nitrogen and sulphur atoms. Thiazole chemistry has developed after the pioneering it of Hofmann and Hantzsch in 1887. Thiazole occupies an important place in medicinal chemistry. It is widely found in diverse pharmacologically active substances and in some naturally occurring compounds. In last decade, heterocyclic compounds containing thiazole moiety and their derivatives were found exhibiting nanoscale properties. In addition, they exhibit a wide spectrum of biological activities such as antioxidant, antitubercular, anti-inflammatory, anti-HIV, antitumor, anticonvulsive, antifungal and antibacterial. Thiazole is an essential in many natural (vitamin B1—thiamine) and synthetic medicinally important compounds. This review focus on both the chemical and biological importance of thiazole as a nanoparticle and the different methods of synthesis of substituted thiazole with potential activities, which are now in developing phase.

Key words: thiazole, synthesis, anticonvulsant, antifungal, anti-HIV pharmacologically active nanoparticles.

https://doi.org/10.15407/nnn.21.01.209

References
  1. R. M. Achson, An Introduction to the Chemistry of Heterocyclic Compounds (India: Willy-Intersciences: 2009), p. 1375.
  2. P. S. Yadav, D. Prakash, and G. P. Senthilkumar, International Journal of Pharmaceutical Sciences and Drug Research, 3, No. 1: 1 (2011).
  3. K. M. Khan, S. Qurban, U. Salar, and M. Taha, Bioorganic Chemistry, 68, No. 245: 58 (2016); http://doi:10.1016/j.bioorg.2016.08.010
  4. S. K. Nirav, S. M. Nimesh, P. P. Manish, and P. G. Ranjan, Journal of the Serbian Chemical Society, 77, Iss. 3: 279 (2012); https://doi.org/10.2298/JSC110630197S
  5. A. K. Prajapati and V. P. Modi, Quim. Nova, 34, No. 5: 64 (2011); https://doi.org/10.1590/S0100-40422011000500008
  6. A. Colon, T. J. Hoffman, J. Gebauer, J. Dash, J. H. Rigby, S. Arseniyadis, and J. Cossy, F. Chem. Commun., 48, Iss. 8: 10508 (2012); https://doi.org/10.1039/C2CC35721F
  7. J. M. Clough, H. Dube, B. J. Martin, G. Pattenden, K. S. Reddy, and I. R. Waldron, Org. Biomol. Chem., 4, Iss. 15: 2906 (2006); https://doi.org/10.1039/B603433K
  8. J. W. Ahn, S. H. Woo, C. O. Lee, K. Y. Cho, and B. S. Kim, J. Nat. Prod., 62, Iss. 3: 495 (1999); https://doi:10.1021/np9804233
  9. H. Steinmetz, E. Forche, H. Reichenbach, and G. Hofle, Tetrahedron, 56, Iss. 12: 1681 (2000); https://doi.org/10.1016/S0040-4020(00)00063-6
  10. G. P. Gunawardana, S. Kohmoto, S. P. Gunesakara, O. J. McConnel, and F. E. Koehn, J. Am. Chem. Soc., 110: 4856 (1988); https://doi.org/10.1021/ja00222a071
  11. L. Feliu, W. Ajanaa, M. Alvarez, and J. A. Joule, Tetrahedron Lett., 53, Iss. 12: 4511 (1997); https://doi.org/10.1016/S0040-4020(97)00125-7
  12. G. Chabowska, E. Barg, and A. Wojcicka, National Library of Medicine, 26, No. 14: 4324 (2021); https://doi:10.3390/molecules26144324
  13. G. T. Zitouni, M. D. Altıntop, A. Özdemir, F. Demirci, U. A. Mohsen, and Z. A. Kaplancikli, J. Enzyme Inhib. Med. Chem., 28, No. 6: 1211 (2013); https://doi:10.3109/14756366.2012.723208
  14. P. S. Yadav, D. Prakash, and G. P. Senthilkumar, International Journal of Pharmaceutical Sciences and Drug Research, 3, No. 1: 1 (2011); https://doi:1025004
  15. J. K. Malik, S. Singh, and P. Purohit, Der Pharmacia Lettre, 2, No. 1: 347, (2010).
  16. J. X. Mu, Y. X. Shi, H. K. Wu, Z. H. Sun, M. Y. Yang, X. H. Liu, and B. J. Li, National Library of Medicine, 10, Iss. 50: 91 (2016); https://doi:10.1186/s13065-016-0196-6
  17. F. Chadegani, F. Darviche, and S. Balalaie, International Journal of Organic Chemistry, 2, No. 1: 31 (2012); https://doi:10.4236/ijoc.2012.21006
  18. S. Bondock, W. Fadaly, and M. A. Metwally, European Journal of Medicinal Chemistry, 45, Iss. 9: 3692 (2010); https://doi:10.1016/j.ejmech.2010.05.018
  19. S. Pola, Heterocycles from Organic and Pharmaceutical Perspective, 21: 106 (2009); https://doi:10.5772/62077
  20. A. M. Ali, G. E. Saber, N. M. Mahfouz, M. A. El-Gendy, A. A. Radwan, and M. A. Hamid, Archives of Pharmacial Research, 30: 1186 (2007); http://doi.org/10.1007/BF02980259
  21. J. V. Metzger, The Chemistry of Heterocyclic CompoundsThiazole and Its Derivatives (New York: John Wiley & Sons Inc.: 2007), vol. 34, part 1.
  22. A. A. Geronikaki, A. A. Lagunin, D. H. Litina, P. T. Eleftheriou, D. A. Filimonov, V. V. Poroikov, I. Alam, and A. K. Saxena, J. Med. Chem., 51, No. 6: 1601 (2008); https://doi.org/10.1021/jm701496h
  23. A. H. Abdelazeem, S. I. Khan, S. W. White, K. J. Sufka, C. R. McCurdy, Bioorganic & Medicinal Chemistry, 23, Iss. 13: 3248 (2015); https://doi.org/10.1016/j.bmc.2015.04.057
  24. A. U. Malgorzata, X. Zhang, and S. Prakash, Cell Biochemistry and Biophysics, 72, No. 3: 86 (2015); https://doi.org/10.1007/s12013-015-0528-5
  25. P. Yer, J. Bolla, V. Kumar, M. S. Gill, and M. E. Sobhia, Molecular Diversity, 19, No. 4: 855 (2015); https://doi.org/10.1007/s11030-015-9578-2
  26. Y. Ali, M. S. Alam, H. Hamid, A. Husain, A. Dhulap, F. Hussain, S. Bano, and C. Kharbanda, New Journal of Chemistry, 40, No. 1: 711 (2016); https://doi.org/10.1039/C5NJ00078E
  27. A. El-Mekabaty, M. O. Osman, O. O. Habib, B. M. Evelin, and A. M. Hasel, Journal of Heterocyclic Chemistry, 53, No. 4: 106 (2016); https://doi.org/10.1002/jhet.2412
  28. R. S. Keri, M. R. Patil, S. A. Patil, and S. Budagumpi, Eur. J. Med. Chem., 89: 207 (2015); https://doi:10.1016/j.ejmech.2014.10.059
  29. S. J. Kashyap, V. K. Garg, P. K. Sharma, N. Kumar, R. Dudhe, and J. K. Gupta, Medicinal Chemistry Research, 21: 2123 (2012); https://doi.org/10.1007/s00044-011-9685-2
  30. I. I. Ilkiv, R. B. Lesyk, and O. Y. Sklyarov, The Ukrainian Biochemical Journal, 88: 99 (2016); https://doi.org/10.15407/ubj88.si01.099
  31. D. P. Gouvea, F. A. Vasconcellos, G. D. Anjos, A. C. Pinto, S. Neto, G. Fischer, R. P. Sakata, W. P. Almeida, and W. Cunico, European Journal of Medicinal Chemistry, 118: 1075 (2016); https://doi.org/10.1016/j.ejmech.2016.04.028
  32. A. M. Abdel-Aziz, L. A. Abou-Zeid, K. E. ElTahir, M. A. Mohamed, M. A. Abu El-Enin, A. S. El-Azab, Bioorganic & Medicinal Chemistry, 24, No. 16: 48 (2016); https://doi.org/10.1016/j.bmc.2016.06.026
  33. A. Lozynskyi, S. Golota, B. Zimenkovsky, D. Atamanyuk, A. Gzella, and R. Lesyk, Phosphorus, Sulfur, and Silicon and the Related Elements, 191, No. 9: 1245 (2016); https://doi.org/10.1080/10426507.2016.1166108
  34. M. Arfeen, S. Bhagat, R. Patel, S. Prasad, I. Roy, K. A. Chakraborti, and P. V. Bharatam, European Journal of Medicinal Chemistry, 121: 942 (2016); https://doi.org/10.1016/j.ejmech.2016.04.075
  35. K. Appalanaidu, R. Kotcherlakota, T. L. Dadmal, V. S. Bollu, R. M. Kumbhare, and C. R. Patra, Bioorganic & Medicinal Chemistry Letters, 26, No. 21: 317 (2016); https://doi.org/10.1016/j.bmcl.2016.08.013
  36. A. El-Mekabaty, M. Osman, O. Habib, E. B. Moawad, and A. M. Hasel, Journal of Heterocyclic Chemistry, 53, No. 6: 421 (2016); https://doi.org/10.1002/jhet.2492
  37. A. Abdelmajeid, M. S. Amine, and R. A. Hassan, International Journal of Organic Chemistry, 07, No. 4: 1 (2017); https://doi.org/10.4236/ijoc.2017.74029
  38. A. A. Fedorchuk, V. V. Kinzhybalo, Yu. I. Slyvka, E. A. Goreshnik, T. J. Bednarchuk, T. Lis, and M. G. Mys’kiv, Journal of Coordination Chemistry, 70, No. 5: 71 (2017); https://doi.org/10.1080/00958972.2017.1286012
  39. H. A. Abd El Razik, M. H. Badr, A. H. Atta, S. M. Mouneir, and M. M. Abu-Serie, Archiv der Pharmazie, 350, No. 5: 353 (2017); https://doi.org/10.1002/ardp.201700026
  40. D. Kaminskyy, A. Kryshchyshyn, and R. Lesyk, European Journal of Medicinal Chemistry, 140: 137 (2017); https://doi.org/10.1016/j.ejmech.2017.09.031
  41. H. S. Arthur, S. D. Daniel, M. G. Siqueira, G. D. Gamaro, W. Cunico, and L. D. Adriana, Medicinal Chemistry Research, 27, No. 1: 124 (2018); https://doi.org/10.1007/s00044-017-2052-1
  42. T. M. Potewar and S. Ingale, Tetrahedron, 63: 11066 (2007); https://doi.org/10.1016/J.TET.2007.08.036
  43. S. B. Yoon, E. J. Chun, Y. R. Noh, Y. J. Yoon, and S. G. Lee, Bulletin of the Korean Chemical Society, 34, Iss. 9: 321 (2013); https://doi.org/10.5012/bkcs.2013.34.9.2819
  44. M. Alam, S. Khan, and M. S. Khan, Journal of the Chilean Chemical Society, 53, No. 4: 421 (2008); http://doi.org/10.4067/S0717-97072008000400017
  45. A. H. Cook, I. Heilbron, S. F. MacDonald, and A. P. Mahadevan, J. Chemical Society, 12: 1064 (1949); https://doi.org/10.1039/JR9490001064
  46. G. S. Lingaraju, T. R. Swaroop, A. C. Vinayaka, K. S. S. Kumar, M. P. Sadashiva, and K. S. Ragappa, Tetrahedron, 44: 1373 (2012); https://doi.org/10.1055/s-0031-1290762
  47. A. A. Hassan, N. K. Mohamed, K. M. El-Shaieb, H. N. Tawfeek, and S. B. Nieger, Arabian Journal of Chemistry, 12, Iss. 2: 39 (2019); https://doi.org/10.1016/j.arabjc.2014.10.035
  48. T. J. Rashamuse, M. Q. Fish, E. M. Coyanis, and M. L. Bode, Integrase Interaction Inhibitors, 26, No. 20: 104242 (2021); https://doi.org/10.3390/molecules26206203
  49. C. A. Ganou, P. Th. Eleftheriou, P. Theodosis-Nobelos, M. Fesatidou, A. A. Geronikaki, T. Lialiaris, and E. A. Rekka, SAR and QSAR in Environmental Research, 29, No. 2: 133 (2018); https://doi.org/10.1080/1062936X.2017.1414874
  50. O. Kouatly, Ph. Eleftheriou, A. Petrou, D. Hadjipavlou-Litina, and A. Geronikaki, SAR and QSAR in Environmental Research, 29, No. 2: 1601 (2018); https://doi.org/10.1080/1062936X.2017.1410220
  51. B. Qi, Y. Yang, H. He, X. Yue, Y. Zhou, X. Zhou, Y. Chen, M. Liu, A. Zhang, and F. Wei, European Journal of Medicinal Chemistry, 146: 112001 (2018); https://doi.org/10.1016/j.ejmech.2018.01.061
  52. K. Liaras, M. Fesatidou, and A. Geronikaki, Molecules, 23, No. 3: 685 (2018); https://doi.org/10.3390/molecules23030685
  53. R. H. Prager, M. R. Taylor, and C. M. Williams, J. Chem. Soc. Perkin Trans., 1: 79 (1997).
  54. N. K. Downer and Y. A. Jackson, Organic. Biomorganic. Chemistry, 2: 49 (2004); https://doi.org/10.1039/B410373D
  55. S. A. Ibrahim and H. F. Rizk, J. Chem. Soc. Perkin Trans., 1, No. 96: 4093 (1998).
  56. V. E. Borisenko, A. Koll, E. E. Kolmakov, and A. G. Rjasnyi, Journal of Molecular Structure, 783: 75 (2006).
  57. S. Kumar, D. S. Rathore, G. Garg, K. Khatri, R. Saxena, and S. K. Sahu, International Journal of Pharmacy and Pharmaceutical Sciences, 9, Iss. 2: 147 (2017); https://doi.org/10.22159/ijpps.2017v9i2.14359
  58. A. Doregiraee, E. T. Kermani, H. Khabazzadeh, and P. Pouramiri, J. Chil. Chem. Soc., 60, No. 3: 374 (2015); http://doi.org/10.4067/S0717-97072015000300009
  59. T. M. Potewar and S. A. Ingale, Tetrahedron, 63, No. 45: 479 (2007); http:/.doi.org/10.1016/j.tet.2007.08.036
  60. Mark J. Thompson, William Heal, and Beining Chen, Tetrahedron Letters, 47, Iss. 14: 2361 (2006); https://doi.org/10.1016/j.tetlet.2006.02.004
  61. A. Mori, A. Sekiguchi, K. Masui, T. Shimada, M. Horie, K. Osakada et al., Journal of the American Chemical Society, 125, No. 7: 1700 (2003); https://doi.org/10.1021/ja0289189
  62. B. Y. Kim, H. S. Kim, and A. A. Helal, Sensors and Actuators B: Chemical, 206: 430 (2015); https://doi.org/10.1016/j.snb.2014.09.071
  63. T. Bach and S. Heuser, Tetrahedron Letters, 41, Iss. 11: 1707 (2000); https://doi.org/10.1016/S0040-4039(00)00018-6
  64. A. Dondoni, Organic & Biomolecular Chemistry, 8: 3366 (2010); https://doi.org/10.1039/C002586K
  65. Xugang Guo, Jordan Quinn, Zhihua Chen, Hakan Usta, Yan Zheng, Yu Xia, Jonathan W. Hennek, Rocio Ponce Ortiz, Tobin J. Marks, and Antonio Facchetti, J. Am. Chem. Soc., 135: 1986 (2013); https://doi.org/10.1021/ja3120532
  66. W. C. Patt, W. C. Hamilton, M. D. Taylor, M. J. Ryan, C. J. Connolly, S. P. Klutchko, I. Sirear, B. L. Batley, S. T. Rapundalo, and S. C. Olson, J.Med. Chem., 35, No. 14: 2562 (1992); https://doi.org/10.1021/jm00092a006
  67. R. A. Peters, Lancet, 5882: 1161 (1936).
  68. R. Breslow, J. Am. Chem. Soc., 80, No. 14: 12590 (1958).
  69. J. J. Kril, Metab. Brain. Dis., 11, No. 1: 19 (2006); https://doi.org/10.1007/BF02080928
  70. L. P. Garrod, Br. Med. J., 1, No. 5172: 1201 (1960); https://doi:.org/10.1136/bmj.1.5172.527
  71. J. W. Tracy, B. A. Catto, and L. T. Webster, Mol. Pharmacol., 24, No. 2: 54 (1983).
  72. R. Barat, A. Srinatha, J. Pandit, N. Mittal, and S. Anupurba, Drug Delivery, 14, No. 8: 87 (2007); https://doi.org/10.1080/10717540701606517
  73. R. Barat, A. Srinatha, J. K. Pandit, D. Ridhurkar, J. Balasubramaniam, N. Mittal, and D. N. Mishra, Drug Delivery, 13, Iss. 5: 645 (2008); https://doi.org/10.1080/10717540500398126
  74. T. Moulard, J. F. Lagorce, J. C. Thomas, and C. Raby, J. Pharm. Pharmacol., 24, No. 8: 147 (1993); https://doi.org/10.1111/j.2042-7158.1993.tb07098.x
  75. B. Ghasemi, G. Sanjarani, Z. Sanjarani, and H. Majidiani, Iran. J. Microbiol., 7, No. 5: 281 (2015).
  76. S. Khabnadideh, Z. Rezaei, K. Pakshir, K. Zomorodian, and N. Ghafari, Res. Pharm. Sci., 7, No. 2: 65 (2012).
  77. J. M. Bueno, M. Carda, B. Crespo, A. C. Cunat, C. de Cozar, M. L. Leon, J. A. Marco, N. Roda, and J. F. Sanz-Cervera, Bio Org. Med. Chem. Lett., 26: 102914 (2016).
  78. A. M. Alqahtania and A. A. Bayazeed, Arabian Journal of Chemistry, 14, Iss. 1: 241 (2021); https://doi.org/10.1016/j.arabjc.2020.11.020
  79. K. W. Dawood, T. M. Eldebss, H. S. El-Zahabi, and M. H. Yousef, Eur. J. Med. Chem., 18, No. 102: 111 (2015); https://doi.org/10.1016/j.ejmech.2015.08.005
  80. R. N. Sharma, F. P. Xavier, K. K. Vasu, S. C. Chaturvedi, and S. S. Pancholi, Journal of Enzyme Inhibition and Medicinal Chemistry, 24, No. 3: 2029 (2009); https://doi.org/10.1080/14756360802519558
  81. O. B. Dundar, M. C. Unlusoy, E. J. Verspohl, and R. Ertan, Arzneimittelforschung, 56, No. 9: 264 (2006); https://doi.org/10.1055/s-0031-1296762
  82. R. J. Weikert, S. J. Bingham, M. A. Emanuel, E. B. Smith, D. G. Loughhead, P. H. Nelson, and A. L. Poulton, J. Med. Chem., 34: 744 (1991).
  83. K. V. Derpoorten, H. Ucar, and Poupaert, J. Med. Chem., 41: 671 (1998).
  84. B. Z. Kurt, I. Gazioglu, F. Sonmez, and M. Kucukislamoglu, Bio. Org. Chem., 59: 11 (2015); https://doi.org/10.1016/j.bioorg.2015.02.002
  85. A. Lozynskyi, B. Zimenkovsky, and R. Lesyk, Sci. Pharm., 82, No. 4: 723 (2014); https://doi.org/10.3797/scipharm.1408-05
  86. A. M. Omar and N. H. Eshba, J. Pharm. Sci., 73, No. 8: 440 (1984); https://doi.org/10.1002/jps.2600730837
  87. S. Hu-Lieskovan, S. Mok, B. Homet Moreno, J. Tsoi, L. Robert, L. Goedert, E. M. Pinheiro, R. C. Koya, T. G. Graeber, B. Comin-Anduix, and A. Ribas, Sci. Transl. Med., 18: 28502 (2015).
  88. A. Geronikaki, P. Eleftheriou, P. Vicini, I. Alam, A. Dixit, and A. K. Saxena, Journal of Medicinal Chemistry, 51, No. 17: 5221 (2008); https://doi.org/10.1021/jm8004306
  89. M. Mishchenko, S. Shtrygol, A. Lozynskyi, M. Hoidyk, D. Khyluk, T. Gorbach, and R. Lesyk, Scientia Pharmaceutica, 90, No. 3: 56 (2022); https://doi.org/10.3390/scipharm90030056
  90. B. T. Harshitha, J. Jayashankar, A. P. Anand, S. Sandeep, H. S. Jayanth, C. S. Karthik, P. Mallu, N. Haraprasad, and N. B. Krishnamurthy, Asian Journal of Chemistry, 34, No. 8: 2562 (2022); https://doi.org/10.14233/ajchem.2022.23673
  91. L. H. Abdel-Rahman, S. K. Mohamed, Y. El Bakri, S. Ahmad, C. Lai, A. A. Amer, J. T. Mague, and E. M. Abdalla, Journal of Molecular Structure, 1245: 165 (2021); https://doi.org/10.1016/j.molstruc.2021.130997
  92. S. Badr, Turkish Journal of Chemistry, 35, Iss. 1: 131 (2011).
  93. C. Tratrat, M. Haroun, E. Tsolaki, A. Petrou, A. Gavalas, A. Geronikaki, Current Topics in Medicinal Chemistry, 21, No. 4: 257 (2021); https://doi.org/10.2174/1568026621999201214232458
  94. L. Y. He, S. S. Zhang, D. X. Peng, L. P. Guan, and S. H. Wang, Bioorganic & Medicinal Chemistry Letters, 30, No. 17: 105 (2020); https://doi.org/10.1016/j.bmcl.2020.127376
  95. V. J. Faldu, P. K. Talpara, N. H. Bhuva, P. R. Vachharajani, and V. H. Shah, International Letters of Chemistry, Physics and Astronomy, 25: 26 (2014); https://doi.org/10.18052/www.scipress.com/ILCPA.25.26
  96. C. Tratrat, Combinatorial Chemistry & High Throughput Screening, 23, No. 2: 126 (2020); https://doi.org/10.2174/1386207323666200127115238
  97. N. Sahiba, A. Sethiya, J. Soni, D. K. Agarwal, and S. Agarwal, Topics in Current Chemistry, 378, No. 2: 34 (2020); https://doi.org/10.1007/s41061-020-0298-4
  98. J. F. Rossignol, Antiviral Research, 110: 94 (2014); https://doi.org/10.1016/j.antiviral.2014.07.014
  99. Y. Ogawa, Y. Nonaka, T. Goto, E. Ohnishi, T. Hiramatsu et al., Nat. Commun., 86, No. 1: 1090 (2010); https://doi.org/10.1038/ncomms1090
  100. M. Z. Kounnas, A. M. Danks, S. Comer et al., Bio Org. Med. Chem. Lett., 67, No. 5: 93 (2010); https://doi.org/10.1016/j.neuron.2010.08.018
  101. S. M. Holota, H. O. Derkach, I. L. Demchuk, R. B. Vynnytska, O. I. Antoniv, L. O. Furdychko, N. Y. Slyvka, I. O. Nektegayev, and R. B. Lesyk, Biopolymers and Cell, 35, No. 6: 81 (2019); https://doi.org/10.7124/bc.000A17
  102. V. V. Poroikov, D. A. Filimonov, T. A. Gloriozova, A. A. Lagunin, D. S. Druzhilovskiy, A. V. Rudik, L. A. Stolbov, A. V. Dmitriev, O. A. Tarasova, S. M. Ivanov, and P. V. Pogodin, Russian Chemical Bulletin, 68, No. 12: 8 (2019); https://doi.org/10.1007/s11172-019-2683-0
  103. R. G. Kalkhambkar, G. M. Kulkarni, H. Shivkumar, and R. Nagendra Rao, Eur. J. Med. Chem., 42, Iss. 10: 1272 (2007); https://doi.org/10.1016/j.ejmech.2007.01.023
  104. T. Kampmann, R. Yennamalli, D. P. Fairlie, B. Kobe, and P. R. Young, Antiviral Res., 84, No. 3: 443 (2009); https://doi.org/10.1016/j.antiviral.2009.09.007
  105. K. C. Tiew, D. Dou, T. Teramoto, H. Lai, and K. R. Alliston, Bioorg. Med. Chem., 20, No. 3: 605 (2012); https://doi.org/10.1016/j.bmc.2011.12.047
  106. T. Lin, O. Lenz, G. Fanning, T. Verbinnen, F. Delouvroy et al., Antimicrob. Agents Chemother., 53, No. 4: 1377 (2009); https://doi.org/10.1128/AAC.01058-08
  107. Y. Liu, F. Jing, Y. Xu, Y. Xie, F. Shi, H. Fang, M. Li, and W. Xu, Bioorg. Med. Chem., 19, No. 7: 2342 (2011); https://doi.org/10.1016/j.bmc.2011.02.019
  108. R. Mohil, D. Kumar, and S. Mor, J. Hetrocyclic Chem., 51, Iss. 1: 9 (2014); https://doi.org/10.1002/jhet.1081
  109. Jitendra Nalawade, Abhijit Shinde, Abhijit Chavan, Sachin Patil, Manjusha Suryavanshi, Manisha Modak, Prafulla Choudhari, Vivek D. Bobade, and Pravin C. Mhaske, European Journal of Medicinal Chemistry, 179: 649 (2019); doi:10.1016/j.ejmech.2019.06.074
  110. R. P. Singh, M. N. Aziz, D. Gout, W. Fayad, M. A. El-Manawaty, and C. J. Lovely, Bioorganic & Medicinal Chemistry, 27, No. 20: 167 (2019); https://doi.org/10.1016/j.bmc.2019.115047
  111. V. Slachtova, L. Janovska, and L. Brulikova, Journal of Molecular Structure, 1183: 10118 (2019); https://doi.org/10.1016/j.molstruc.2019.01.073
  112. Y. M. Omar, H. M. Abdu-Allah, G. Samia, and G. Abdel-Moty, Bioorganic Chemistry, 80: 375 (2018); https://doi.org/10.1016/j.bioorg.2018.06.036
  113. K. Liaras, M. Fesatidou, and A. Geronikaki, Molecules, 23, No. 3: 685 (2018); https://doi.org/10.3390/molecules23030685
  114. C. A. Ganou, P. Th. Eleftheriou, P. Theodosis-Nobelos, M. Fesatidou, A. A. Geronikaki, T. Lialiaris, and E. A. Rekka, SAR and QSAR in Environmental Research, 29, No. 2: 133 (2018); https://doi.org/10.1080/1062936X.2017.1414874
  115. D. Kaminskyy, A. Kryshchyshyn, and R. Lesyk, European Journal of Medicinal Chemistry, 140: 490 (2017); https://doi.org/10.1016/j.ejmech.2017.09.031
  116. I. I. Ilkiv, R. B. Lesyk, and O. Ya. Sklyarov, The Ukrainian Biochemical Journal, 88: 99 (2016); https://doi.org/10.15407/ubj88.si01.099
  117. F. Aksakal, N. Shvets, and A. Dimoglo, Journal of Molecular Graphics and Modelling, 60: 1693 (2015); https://doi.org/10.1016/j.jmgm.2015.06.006
  118. W. A. Bayoumi, S. H. Abdel-Rhman, and M. E. Shaker, Open Chemistry Journal, 1, No. 1: 134 (2014); https://doi.org/10.2174/1874842201401010033

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement