Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

N. V. Krishna Prasad, K. Chandra Babu Naidu, T. Anil Babu, S. Ramesh, and N. Madhavi
Electrochemical Sensors Based on Carbon Allotrope Graphene: A Review on Their Environmental Applications
0185–0198 (2023)

PACS numbers: 07.07.Df, 07.88.+y, 81.05.ue, 81.07.Pr, 81.16.-c, 82.45.Yz, 82.47.Rs

Anthropogenic activity in terms of urbanization, industrialization, and modern agricultural techniques challenges the natural environment in terms of compromise in air pollution and water quality, which lead to hazardous health impacts on human beings. In this context, it is very essential to monitor the air and water quality to a maximum possible extent with maximum accuracy, which is of utmost significance. A significant effect on human health due to pollutants makes their detection in water and air essential. Even though various techniques of monitoring these pollutants are available, proven advantages of electrochemical techniques attract more attention. Because of this, an attempt is made to review some of the latest advances in electrochemical sensing of environmental contaminants, which include heavy-metal ions and pesticides. Electrochemical sensing has been done by using sensors designed with various materials. However, sensors designed with carbon and its allotropes such as carbon nanotubes, graphene derivatives, carbon nanodots, active carbon, screen-printed carbon electrode, and others are reviewed. Even though these sensors are capable of being used in medical analysis, food safety, soil quality, drug detection, etc., the review paper highlights only applications related to environmental monitoring. This review is mainly meant to come up with an understanding of the present-day progress in electrochemical applications based on carbon and its allied materials towards environmental pollutants. This review highlights some of the synthesis techniques of graphene (an allotrope of carbon) and sensor designing along with their performance. This review has established the compatibility in the published literature that graphene and related materials play a significant role in electrochemical sensing of pollutants.

Key words: electrochemical sensing, heavy metal ions, carbon allotropes.

https://doi.org/10.15407/nnn.21.01.185

References
  1. W. Zhang, L. Wang, Y. Yang, G. Paul, and K. S. Teng, ACS Sens., 4, No. 5: 1138 (2019); https://doi:10.1021/acssensors.9b00272
  2. T. Arfin and S. N. Rangari, Anal. Methods, 10, No. 3: 347 (2018); https://doi:10.1039/c7ay02650a
  3. S. Su, S. Chen, and C. Fan, Green Energy and Environ., 3, No. 2: 97 (2018); https://doi:10.1016/j.gee.2017.08.005
  4. T. Priya, N. Dhanalakshmi, S. Thennarasu, and N. Thinakaran, Carbohydr. Polym., 182: 199 (2018); https://doi:10.1016/j.carbpol.2017.11.0172017
  5. L. P. Lingamdinne, J. R. Koduru, and R. R. Karri, J. Environ. Manag., 231: 622 (2019); https://doi:10.1016/j.jenvman.2018.10.063
  6. N. Ullah, M. Mansha, I. Khan, and A. Qurashi, Trac. Trends Anal. Chem., 100: 155 (2018); https://doi:10.1016/j.trac.2018.01.002
  7. S. Sharma and A. Bhattacharya, Appl. Water Sci., 7, No. 3: 1043 (2017); https://doi:10. 1007/s13201-016-0455-7
  8. R. Álvarez-Ruiz and Y. Pico, Trends Environ. Anal. Chem., 25: 111 (2020); https://doi:10.1016/j.teac.2020.e00082
  9. J. Molina, F. Cases, and L. M. Moretto, Anal. Chim Acta., 946: 9 (2016); https://doi:10.1016/j.aca.2016.10.019
  10. Y. Zuo, J. Xu, X. Zhu, X. Duan, L. Lu, and Y. Yu, Microchim. Acta, 186, No. 3: 171 (2019); https://doi:10.1007/s00604-019-3248-5
  11. H. Hou, K. M. Zeinu, S. Gao, B. Liu, J. Yang, and J. Hu, Energy Environ. Materials, 1, No. 3: 113 (2018); https://doi:10.1002/eem2.12011
  12. L. P. Lingamdinne and J. R. Koduru, Environ. Anal. Ecol. Stud., 2: 2 (2018); https://doi:10.31031/EAES.2018.02.000528
  13. L. Wang, X. Peng, H. Fu, C. Huang, Y. Li, and Z. Liu, Biosens. Bioelectron., 147: 111777 (2020); https://doi:10.1016/j.bios.2019.111777
  14. D. L. Huang, J. Wang, C. Fan, A. Ali, H. S. Guo, and Y. Xiao, Microchim. Acta, 186, No. 6: 186 (2019); https://doi:10. 1007/S00604-019-3417-6
  15. G. L. Wen, W. Zhao, X. Chen, J. Q. Liu, Y. Wang, Y. Zhang, Z. Huang, and Y. Wu, Electrochim. Acta, 291: 95 (2018); https://doi:10.1016/j.electacta.2018.08.121
  16. B. Bansod, T. Kumar, R. Thakur, S. Rana, and I. Singh, Biosens. Bioelectron., 94: 443 (2017); https://doi:10.1016/j.bios.2017.03.031
  17. T. Smith, M. L. C. Anna, Z. Songshan, L. Bin, and S. Luyi, Nano Mater. Sci., 1, No. 1: 31 (2019); https://doi:10.1016/j.nanoms.2019.02.004
  18. K. Theyagarajan, M. Elancheziyan, P. S. Aayushi, and K. Thenmozhi, Int. J. Biol. Macromol., 163: 358 (2020); https://doi:10.1016/j.ijbiomac.2020.07.005
  19. R. Jerome and A. K. Sundramoorthy, Anal. Chim. Acta, 1132: 110 (2020); https://doi:10.1016/j.aca.2020.07.060
  20. T. Hang, S. Xiao, Y. Cheng, X. Li, C. Guo, H. Gen, L. Baohong, C. Yang, H. Chen, F. Liu, S. Deng, Y. Zhang, and X. Xie, Sensor. Actuator. B Chem., 289: 15 (2019); https://doi:10.1016/j.snb.2019.03.038.20184
  21. Q. He, Y. Tian, Y. Wu, J. Liu, G. Li, and P. Deng, Nanomaterials., 9, No. 429: 1 (2019); https://doi:10.3390/nano9030429
  22. S. K. Krishnan, E. Singh, P. Singh, M. Meyyappan, and H. S. Nalwa, RSC Adv., 9, No. 16: 8778 (2019); https://doi:10.1039/c8ra09577a
  23. C. Murugan, N. Murugan, A. K. Sundramoorthy, and A. Sundaramurthy, ACS Appl. Nano Mater., 3: 8461 (2020); https://doi:10.1021/acsanm.0c01949
  24. R. D. Nagarajan and A. K. Sundramoorthy, Sensor Actuator B Chem., 301: 127132 (2019); https://doi:10.1016/j.snb.2019.127132
  25. T. Dideikin and A. Y. Vul’, Front. Phys., 6: 149 (2019); https://doi:10.3389/fphy.2018.00149
  26. S. Nagarani, G. Sasikala, K. Satheesh, M. Yuvaraj, and R. Jayavel, J. Mater. Sci. Mater. Electron., 29, No. 14: 11738 (2018); https://doi:10.1007/s10854-018-9272-0
  27. N. R. Dywili, A. Ntziouni, C. Ikpo, M. Ndipingwi, N. W. Hlongwa, A. L. D. Yonkeu, M. Masikini, K. Kordatos, and E. I. Iwuoha, Micromachines, 10, No. 2: 114 (2019); https://doi:10.3390/mi10020115
  28. M. B. Gumpu, M. Veerapandian, U. M. Krishnan, and J. B. Rayappan, Talanta, 162: 574 (2017); https://doi:10.1016/j.talanta.2016.10.076.2016
  29. N. Wongkaew, M. Simsek, C. Griesche, and A. J. Baeumner, Chem. Rev., 119, No. 1: 120 (2019); https://doi:10.1021/acs.chemrev.8b00172
  30. S. Banerjee, S. McCracken, M. F. Hossain, and G. Slaughter, Biosensors., 10, No. 8: 33 (2020); https://doi:10.3390/bios10080101
  31. Geca and M. Korolczuk, Talanta, 171: 321 (2017); https://doi:10.1016/j.talanta.2017.05.008
  32. Waheed, M. Mansha, and N. Ullah, Trac. Trends Anal. Chem., 105: 37 (2018); https://doi:10.1016/j.trac.2018.04.012
  33. Shtepliuk and R. Yakimova, Nanotechnology, 30, No. 29: 294002 (2019); https://doi:10.1088/1361-6528/ab1546
  34. W. Jin and G. Maduraiveeran, J. Anal. Sci. Technol., 9, No. 18: 1 (2018); https://doi:10.1186/s40543-018-0150-4
  35. S. Manavalan, P. Veerakumar, S. M. Chen, and C. King, Microchim. Acta., 187, No. 1: 33 (2020); https://doi:10.1007/s00604-019-4031-3
  36. Pena-Bahamonde, H. N. Nguyen, S. K. Fanourakis, and D. F. Rodrigues, J. Nanobiotechnol., 16, No. 1: 75 (2018); https://doi:10.1186/s12951-018-0400-z
  37. Kumar, B. Purohit, P. K. Maurya, L. M. Pandey, and P. Chandra, Electroanalysis, 31: 1615 (2019); https://doi:10.1002/elan.201900216
  38. Numan, A. A. S. Gill, S. Rafique, M. Guduri, Y. Zhan, B. Maddiboyina, L. Li, S. Singh, and N. N. Dang, J. Hazard Mater., 7: 124493 (2020); https://doi:10.1016/j.jhazmat.2020.124493
  39. G. Moro, K. De Wael, and L. Maria Moretto, Curr. Opin. Electrochem., 16: 57 (2019); https://doi:10.1016/j.coelec.2019.04.019
  40. Yan, X. Yan, H. Li, X. Zhang, M. Wang, S. Fu, G. Zhang, C. Qian, H. Yang, J. Han, and F. Xiao, Microchem. J., 157: 105016 (2020); https://doi:10.1016/j.microc.2020.105016
  41. Malakootian, S. Hamzeh, and H. Mahmoudi-Moghaddam, Microchem. J., 158: 1 (2020); https://doi:10.1016/j.microc.2020.105194
  42. W. Zeng, D. Manoj, H. Sun, R. Yi, X. Huang, and Y. Sun, J. Electroanal. Chem., 833: 527 (2019); https://doi:10.1016/j.jelechem.2018.12.028
  43. M. Bhadra, M. Werner, V. A. Baulin, T. Vi Khanh, M. A. Kobaisi, S. H. Nguyen, A. Balcytis, S. Juodkazis, J. Y. Wang, D. E. Mainwaring, R. J. Crawford, and E. P. Ivanova, Nano- Micro Lett., 10, No. 2: 1 (2018); https://doi:10.1007/s40820-017-0186-9
  44. H. Chen, M. J. Pan, Z. Jargalsaikhan, T. O. Ishdorj, and F. G. Tseng, Biosensors, 10, No. 11: 12 (2020); https://doi:10. 3390/bios10110163
  45. V. Canalejas-Tejero, A. L. Hernandez, R. Casquel, S. A. Quintero, M. F. Laguna, and M. Holgado, Opt. Mater. Express, 8, No. 4: 1082 (2018); https://doi:10.1364/ome.8.001082
  46. X. Zhuang, C. Tian, F. Luan, X. Wu, and L. Chen, RSC Adv., 6, No. 95: 92541 (2016); https://doi:10.1039/c6ra14970g
  47. I.-H. Cho, H. Dong, and S. Park, Biomater. Res., 24, No. 6: 1 (2020); https://doi.org/10.1186/s40824-019-0181-y
  48. R. Zhang, C. Zhang, F. Zheng, X. Li, and C. -L. Sun, Carbon, 126, No. 328: (2018); https://doi:10.1016/j.carbon.2017.10.042
  49. Theyagarajan, S. Yadav, J. Satija, K. Thenmozhi, and S. S. Kumar, ACS Biomater. Sci. Eng., 6: 6076 (2020); https://doi:10.1021/acsbiomaterials.0c00807
  50. Thangamuthu, K. Y. Hsieh, P. V. Kumar, and Y. Guan, Int. J. Mol. Sci. 20, No. 12: 1 (2019); https://doi:10.3390/ijms20122975
  51. H. Beitollahi, M. Safaei, and S. Tajik, Int. J. Nano Dimens., 10, No. 2: 125 (2019); https://doi:10.18494/sam.2015.1058
  52. El-Shafai, M. Nagi, M. E. El-Khouly, M. El-Kemary, M. S. Ramadan, and M. S. Masoud, RSC Adv., 8, No. 24: 13323 (2018); https://doi:10.1039/c8ra00977e
  53. J. H. Lee, S. J. Park, and J. W. Choi, Nanomaterials, 9, No. 2: 7 (2019); https://doi:10.3390/nano9020297
  54. F. Magesa, Y. Wu, Y. Tian, J. M. Vianney, J. Buza, Q. He, and Y. Tan, Trends Environ. Anal. Chem., 23: e00064 (2019); https://doi:10.1016/j.teac.2019.e00064
  55. H. Huang, S. Su, N. Wu, H. Wan, S. Wan, H. Bi, and L. Sun, Front. Chem., 7: 1 (2019); https://doi:10.3389/fchem.2019.00399
  56. H. Ahmad, M. Fan, and D. Hui, Compos. B Eng., 145: 270 (2018); https://doi:10.1016/j.compositesb.2018.02.006
  57. J. Pei, Y. Xiang, Z. Zhang, J. Zhang, S. Wei, and R. Boukherroub, Appl. Surf. Sci., 527: 146761 (2020); https://doi:10.1016/j.apsusc.2020.146761
  58. S. Campuzano, M. Pedrero, P. Yanez-Sedeno, and J. M. Pingarron, Int. J. Mol. Sci., 20, No. 423: 1 (2019); https://doi:10.3390/ijms20020423
  59. M. Stortini, M. B. Antonietta, G. Moro, F. Polo, and L. M. Moretto, Sensors, 20: 1 (2020); https://doi:10.3390/s20236800
  60. X. Wan, M. Lei, and T. Chen, Front. Environ. Sci. Eng., 14, No. 2: 1 (2020); https://doi:10.1007/s11783-019-1203-7
  61. H. AL-Gahouari, L. Theeazen, G. Bodkhe, P. Sayyad, N. Ingle, M. Mahadik, S. M. Shirsat, M. Deshmukh, N. Musahwar, and M. Shirsat, Front. Mater., 7: 68 (2020); https://doi:10.3389/fmats.2020.00068
  62. Raril and J. G. Manjunatha, J. Anal. Sci. Technol., 11: 3 (2020); https://doi:10.1186/s40543-019-0194-0
  63. Z. Guan, L. Zhao, Y. J. Wan, and L. C. Tang, Nanoscale., 10, No. 31: 14788 (2018); https://doi:10.1039/c8nr03044h
  64. L. Shi, Y. Li, X. Rong, Y. Wang, and S. Ding, Anal. Chim. Acta., 968: 21 (2017); https://doi:10.1016/j.aca.2017.03.013
  65. L. Xiao, B. Wang, L. Ji, F. Wang, Q. Yuan, G. Hu, A. Dong, and W. Gan, Electrochim. Acta, 222: 1371 (2016); https://doi:10.1016/j.electacta.2016.11.113
  66. Baghayeri, M. Ghanei-Motlagh, R. Tayebee, M. Fayazi, and F. Narenji, Anal. Chim. Acta, 1099: 60 (2020); https://doi:10.1016/j.aca.2019.11.045
  67. Lei, S. Zhang, and S. Zhao, Int. J. Electrochem. Sci., 12, No. 6: 4856 (2017); https://doi:10.20964/2017.06.03
  68. Capoferri, F. Della Pelle, M. Del Carlo, and D. Compagnone, Foods, 7, No. 9: 114 (2018); https://doi:10.3390/foods7090148
  69. H. Ren, Y. Zhang, L. Liu, Y. Li, D. Wang, R. Zhang, W. Zhang, Y. Li, and B.-C. Ye, Microchim. Acta, 186, No. 5: 306 (2019); https://doi:10.1007/s00604-019-3432-7
  70. Hernandez-Vargas, J. E. Gustavo Sosa-Hernandez, S. Saldarriaga-Hernandez, A. M. Villalba-Rodriguez, R. Parra-Saldivar, and H. M. N. Iqbal, Biosensors, 8, No. 2: 1 (2018); https://doi:10.3390/bios8020029
  71. R. Zamora-Sequeira, R. Starbird-Perez, O. Rojas-Carillo, and S. Vargas-Villalobos, Molecules, 24, No. 14: 1 (2019); https://doi:10.3390/molecules24142659
  72. E. Fayemi, S. A. Abolanle, and E. E. Ebenso, J. Nanomater., 39: 1 (2016); https://doi:10.1155/2016/4049730
  73. C. PelinBöke, O. Karaman, H. Medetalibeyoglu, C. Karaman, N. Atar, and M. L. Yola, Microchem. J., 157: 105012 (2020); https://doi:10.1016/j.microc.2020.105012
  74. Nag, A. Mitra, and S. C. Mukhopadhyay Sens. Actuators. A, 270: 177 (2018); https://doi:10.1016/j.sna.2017.12.028
  75. S. K. Tiwari, K. M. Raghvendra, H. S. Kyu, and H. Andrzej, Chem. Nano. Mat., 4, No. 7: 598 (2018); https://doi:10.1002/cnma.201800089
  76. J. Sturala, L. Jan, P. Martin, and Z. Sofer, Chem. Eur. J., 24, No. 23: 5992 (2018); https://doi:10.1002/chem.201704192
  77. P. Sharma, R. Nain, S. Chaudhary, and R. Kumar, Environ. Nanotechnol. Monitor. Manag., 14: 100298 (2020); https://doi:10.1016/j.enmm.2020.100298
  78. Y. Song, Y. Luo, C. Zhu, H. Li, D. Du, and Y. Lin, Biosens. Bioelectron., 76: 195 (2016); https://doi:10.1016/j.bios.2015.07.002
  79. K. Coster, S. A. Abolanle, B. M. Bhekie, W. H. Ntuthuko, and T. T. I. Nkambule, Front. Mater., 7: 486 (2021); https://DOI=10.3389/fmats.2020.616787
  80. N. P. Shetti, D. S. Nayak, K. R. Reddy, and T. M. Aminabhvi, Micro and Nano Technologies, Graphene-Based Electrochemical Sensors for Biomolecules. Ch. 10 Graphene–Clay-Based Hybrid Nanostructures for Electrochemical Sensors and Biosensors (Eds. Alagarsamy Pandikumar and Perumal Rameshkumar) (Elsevier: 2019), pp. 235–274; https://doi.org/10.1016/B978-0-12-815394-9.00010-8
  81. Jyotsana Mehta, Priya Vinayak, Satish K. Tuteja, Varun A. Chhabra, Neha Bhardwaj, A. K. Paul, Ki-Hyun Kim, and Akash Deep, Biosensors and Bioelectronics, 83: 339 (2016); https://doi.org/10.1016/j.bios.2016.04.058

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement