Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

Wissam Obeis Obaid and Ahmed Hashim
Studies on Ceramic-Nanoparticles-Doped Polymer for Modern Applications: Recent Review
0163–0172 (2023)

PACS numbers: 81.05.Qk, 81.07.Pr, 82.35.Cd, 82.35.Np, 83.80.Ab, 85.60.Bt, 87.85.Rs

Polymer matrix nanocomposites mostly have unique characteristics include lightweight, flexibility, high corrosion resistance, few cost, and good chemical and physical properties. Ceramic nanoparticles (NPs) like carbides may be utilized as additive to the polymers such as polycarbonate (PC) that leads to formation of new nanomaterial, which can be employed in different biomedical and industrial fields. So, this work includes recent review on nanocomposites of ceramic-nanoparticles-doped polymers and their applications. The previous studies indicated that the nanostructures of ceramic-NPs-doped polymer have many applications in different fields.

Key words: polycarbonate, ceramic nanoparticles, carbides, nanocomposites.

https://doi.org/10.15407/nnn.21.01.163

References
  1. D. R. Paul and L. M. Robeson, Polymer, 49, No. 15: 3187 (2008); doi:10.1016/j.polymer.2008.04.017
  2. R. V Kurahatti, A. O. Surendranathan, S. A. Kori, N. Singh, A. V. R. Kumar, and S. Srivastava, Defence Science Journal, 60, No. 5: 551 (2010); https://idr.nitk.ac.in/jspui/handle/123456789/13983
  3. S. Horikoshi and N. Serpone, Microwaves in Nanoparticle Synthesis: Fundamentals and Applications (John Wiley & Sons: 2013), No. 2012, p. 377.
  4. Physical Properties of Polymers Handbook (Ed. J. E. Mark) (New York: Springer: 2007); https://link.springer.com/book/10.1007/978-0-387-69002-5?noAccess=true
  5. S. D. Alexandratos, Ind. Eng. Chem. Res, 48, No. 1: 388 (2009).
  6. I. Cotte-Rodriguez, C. C. Mulligan, and R. G. Cooks, Anal. Chem, 79, No. 18: 7069 (2007).
  7. A. Mohaisen, Study of Electrical Conductivity for Amorphous and Semi-Crystalline Polymers Filled with Lithium Fluoride Additive (University of Mustansiriah, College of Science: 2009).
  8. W. A. Zisman, Ind. Eng. Chem. Prod. Res. Dev, 8, No. 2: 98 (1969).
  9. G. Akovali, Handbook of Composite Fabrication (iSmithers Rapra Publishing: 2001), vol. 124, No. 6, p. 48.
  10. Dariusz Bogdal and Aleksander Prociak, Microwave-Enhanced Polymer Chemistry and Technology (Wiley-Blackwell: 2007), p. 32.
  11. W. Zhang, A. A. Dehghani-Sanij, and R. S. Blackburn, J. Mater. Sci., 42, No. 10: 3408 (2007); https://doi.org/10.1007/s10853-007-1688-5
  12. T. Gong, S.-P. Peng, R.-Y. Bao, W. Yang, B.-H. Xie, and M.-B. Yang, Composites. B: Eng, 99: 348 (2016); https://doi.org/10.1016/j.compositesb.2016.06.031
  13. R. Strumpler and J. Glatz-Reichenbach, J. Electroceramics, 3, No. 4: 329 (1999).
  14. A. H. Doulabi, K. Mequanint, and H. Mohammadi, Materials (Basel), 7, No. 7: 5327 (2014); https://doi.org/10.3390/ma7075327
  15. P. M. Ajayan, P. Redlich, and M. Ruhle, J. Microsc., 185, No. 2: 275 (1997); https://doi.org/10.1046/j.1365-2818.1997.1670730.x
  16. J. Robertson, Mater. Today, 7, No. 10: 46 (2004).
  17. E. Tang, G. Cheng, and X. Ma, Powder Technol., 161, No. 3: 209 (2006).
  18. H. Gao, B. Ji, I. L. Jager, E. Arzt, and P. Fratzl, Proc. Natl. Acad. Sci., 100, No. 10: 5597 (2003).
  19. P. Mariselvi and G. Alagumuthu, J. Nanosci. Technol., 4, No. 12: (2017); https://www.sciencedirect.com/science/article/abs/pii/S2352801X173000852015
  20. N. Saba, P. M. Tahir, and M. Jawaid, Polymers (Basel), 6, No. 8: 2273 (2014).
  21. W. D. Callister, Jr. and D. G. Rethwisch, Materials Science and Engineering: An Introduction (John Wiley Sons Inc.: 2017); https://www.filepursuit.com/file/34172963-Materials-Science-and-Engineering-An-Introduction-by-William-D-Callister-Jr-David-G-Rethwish-z-lib-org-pdf/
  22. J. Paull, Nanotechnology, No Free Lunch! (PLATTER: 2010); https://openresearch-repository.anu.edu.au/bitstream/1885/49301/2/Paull2010NanoPlatter.pdf
  23. A. Hazim, A. Hashim, and H. M. Abduljalil, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 4: 983 (2020); https://doi.org/10.15407/nnn.18.04.983
  24. A. Hashim and Z. S. Hamad, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 4: 969 (2020); https://doi.org/10.15407/nnn.18.04.969
  25. A. Hashim, A. J. Kadham, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 2: 327 (2021); https://doi.org/10.15407/nnn.19.02.327
  26. A. J. K. Algidsawi, A. Hashim, A. Hadi, and M. A. Habeeb, Semiconductor Physics, Quantum Electronics & Optoelectronics, 24, No. 4: 472 (2021); https://doi.org/10.15407/spqeo24.04.472
  27. A. Hazim, A. Hashim, and H. M. Abduljalil, Egypt. J. Chem., 64, No. 1: 359 (2021); doi:10.21608/EJCHEM.2019.18513.2144
  28. H. Ahmed and A. Hashim, Silicon, 13: 2639 (2021); https://doi.org/10.1007/s12633-020-00620-0
  29. A. Hazim, H. M. Abduljalil, and A. Hashim, Transactions on Electrical and Electronic Materials, 22: 185 (2021); https://doi.org/10.1007/s42341-020-00224-w
  30. A. Hazim, H. M. Abduljalil, and A. Hashim, Transactions on Electrical and Electronic Materials, 21: 550 (2020); https://doi.org/10.1007/s42341-020-00210-2
  31. H. Ahmed and A. Hashim, Journal of Molecular Modeling, 26: 210 (2020) (2020); doi:10.1007/s00894-020-04479-1
  32. H. Ahmed and A. Hashim, Silicon, 14: 4907 (2022); https://doi.org/10.1007/s12633-021-01258-2
  33. A. Hashim, Opt. Quant. Electron., 53: 478 (2021); https://doi.org/10.1007/s11082-021-03100-w
  34. H. Ahmed and A. Hashim, Silicon, 14: 4079 (2022); https://doi.org/10.1007/s12633-021-01186-1
  35. H. Ahmed and A. Hashim, Trans. Electr. Electron. Mater., 23: 237 (2022); https://doi.org/10.1007/s42341-021-00340-1
  36. N. Al-Huda Al-Aaraji, A. Hashim, A. Hadi, and H. M. Abduljalil, Silicon, 14: 4699 (2022); https://doi.org/10.1007/s12633-021-01265-3
  37. H. Ahmed and A. Hashim, Silicon, 14: 7025 (2022); https://doi.org/10.1007/s12633-021-01465-x
  38. H. Ahmed and A. Hashim, Silicon, 13: 1509 (2021); https://doi.org/10.1007/s12633-020-00543-w
  39. A. Hazim, A. Hashim, and H. M. Abduljalil, Trans. Electr. Electron. Mater., 21: 48 (2019); https://doi.org/10.1007/s42341-019-00148-0
  40. H. Ahmed, A. Hashim, and H. M. Abduljalil, Ukr. J. Phys., 65, No. 6: 533 (2020); https://doi.org/10.15407/ujpe65.6.533
  41. A. Hashim, H. Abduljalil, and H. Ahmed, Egypt. J. Chem., 62, No. 9: (2019); doi:10.21608/EJCHEM.2019.7154.1590
  42. A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials, 30: 3894 (2020); https://doi.org/10.1007/s10904-020-01528-3
  43. A. Hashim, J. Mater. Sci.: Mater. Electron., 32: 2796 (2021); https://doi.org/10.1007/s10854-020-05032-9
  44. H. Ahmed and A. Hashim, International Journal of Scientific & Technology Research, 8, Iss. 11: 1014 (2019); https://www.ijstr.org/final-print/nov2019/Fabrication-Of-Novel-pvaniosic-Nanocomposites-Structural-Electronic-And-Optical-Properties-For-Humidity-Sensors.pdf
  45. A. Hashim, A. J. K. Algidsawi, H. Ahmed, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 2: 353 (2021); https://doi.org/10.15407/nnn.19.02.353
  46. A. Hashim, A. J. K. Algidsawi, H. Ahmed, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, No. 1: 91 (2021); https://doi.org/10.15407/nnn.19.01.091
  47. B. Mohammed, H. Ahmed, and A. Hashim, Journal of Physics: Conference Series, 1963: 01205 (2021); doi:10.1088/1742-6596/1963/1/012005
  48. B. Mohammed, H. Ahmed, and A. Hashim, Journal of Physics: Conference Series, 1879: 032110 (2021); doi:10.1088/1742-6596/1879/3/032110
  49. A. Hashim, I. R. Agool, and K. J. Kadhim, Journal of Bionanoscience, 12, No. 5: 608 (2018); doi:10.1166/jbns.2018.1580
  50. A. Hazim, A. Hashim, and H. M. Abduljalil, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 68 (2019); https://doi.org/10.30534/ijeter/2019/01782019
  51. A. Hazim, H. M. Abduljalil, and A. Hashim, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 104 (2019); https://doi.org/10.30534/ijeter/2019/04782019
  52. H. Ahmed and A. Hashim, Silicon, 14: 6637 (2022); https://doi.org/10.1007/s12633-021-01449-x
  53. A. Hashim and Z. S. Hamad, Egypt. J. Chem., 63, No. 2: 461 (2020); doi:10.21608/EJCHEM.2019.7264.1593
  54. H. Ahmed and A. Hashim, Silicon, 13: 4331 (2021); https://doi.org/10.1007/s12633-020-00723-8
  55. A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials, 31: 2483 (2021); https://doi.org/10.1007/s10904-020-01846-6
  56. H. Ahmed and A. Hashim, Transactions on Electrical and Electronic Materials, 22: 335 (2021); https://doi.org/10.1007/s42341-020-00244-6
  57. A. S. Shareef, F. Lafta R., A. Hadi, and A. Hashim, International Journal of Scientific & Technology Research, 8, Iss. 11: 1041 (2019); https://www.ijstr.org/final-print/nov2019/Water-polyethylene-Glycol-sic-wc-And-ceo2-wcnanofluids-For-Saving-Solar-Energy-.pdf
  58. A. Hadi, A. Hashim, and D. Hassan, Bulletin of Electrical Engineering and Informatics, 9, No. 1: 83 (2020); doi:10.11591/eei.v9i1.1323
  59. A. Hashim and N. Hamid, Journal of Bionanoscience, 12, No. 6: 788 (2018); https://doi.org/10.1166/jbns.2018.1591
  60. A. Hashim and Z. S. Hamad, Journal of Bionanoscience, 12, No. 4: 488 (2018); https://doi.org/10.1166/jbns.2018.1551
  61. D. Hassan and A. Hashim, Journal of Bionanoscience, 12, No. 3: 346 (2018), https://doi.org/10.1166/jbns.2018.1537
  62. A. Hashim and Z. S. Hamad, Journal of Bionanoscience, 12, No. 4: 504 (2018); doi:10.1166/jbns.2018.1561
  63. B. Abbas and A. Hashim, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 131 (2019); https://doi.org/10.30534/ijeter/2019/06782019
  64. K. H. H. Al-Attiyah, A. Hashim, and S. F. Obaid, Journal of Bionanoscience, 12, No. 2: 200 (2018); https://doi.org/10.1166/jbns.2018.1526
  65. D. Hassan and A. Hashim, Journal of Bionanoscience, 12, No. 3: 341 (2018); https://doi.org/10.1166/jbns.2018.1533
  66. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 122, No. 63: 35 (2012).
  67. J. Emsley, Nature’s Building Blocks: An AZ Guide to the Elements (Oxford: University Press: 2011).
  68. Y.-J. Chen, J.-B. Li, Q.-M. Wei, and H.-Z. Zhai, J. Cryst. Growth, 224, Nos. 3–4: 244 (2001).
  69. J.-G. Choi, Appl. Catal. A: Gen., 184, No. 2: 189 (1999).
  70. A. Krajewski, L. D’alessio, and G. De Maria, Cryst. Res. Technol. J. Exp. Ind. Crystallogr., 33, No. 3: 341 (1998).
  71. D. J. Rowcliffe and W. J. Warren, J. Mater. Sci., 5, No. 4: 345 (1970).
  72. E. Khaleghi, Y.-S. Lin, M. A. Meyers, and E. A. Olevsky, Scr. Mater., 63, No. 6: 577 (2010); https://doi.org/10.1016/j.scriptamat.2010.06.006
  73. X. Zhang, G. E. Hilmas, W. G. Fahrenholtz, and D. M. Deason, J. Am. Ceram. Soc., 90, No. 2: 393 (2007); https://doi.org/10.1111/j.1551-2916.2006.01416.x
  74. A. Hashim, M. K. Al-Khaykanee, and A. Mohammad, J. Babylon Univ., 21, No. 7: 2522 (2013); https://www.researchgate.net/profile/Mohsin-Al-Khaykanee/publication/311349447_Characterization_of_PMMA-CoCl2_Composites/links/599be9f045851574f4ac7d6d/Characterization-of-PMMA-CoCl2-Composites.pdf
  75. R. S. Rana, R. Purohit, and S. Das, Int. J. Sci. Eng. Res, 3, No. 6: 1 (2012).
  76. S. Perez and R. P. Scaringe, Macromolecules, 20, No. 1: 68 (1987); https://doi.org/10.1021/ma00167a014
  77. D. Kyriacos, Brydson’s Plastics Materials (Ed. Marianne Gilbert) (Elsevier: (2017), p. 457.

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement