Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

Ola Basim Fadil and Ahmed Hashim
Recent Review on Metal-Oxide-Nanoparticles-Doped Polymethyl Methacrylate (PMMA) for Modern Fields
0153–0161 (2023)

PACS numbers: 81.05.-t, 81.07.Pr, 82.35.Np, 83.80.Ab, 85.60.-q, 87.85.Qr, 87.85.Rs

The polymers like polymethyl methacrylate (PMMA) have unique characteristics, which made them to be considered as promising material for various biomedical, electronics and optics applications. Metal-oxide nanoparticles have huge applications in different approaches. This work includes a recent review on polymer like PMMA doped with metal-oxide nanoparticles such as SiO2 and CeO2. The previous studies showed that the nanocomposites of PMMA/metal-oxide nanoparticles have many applications in the biomedical, electronics, optical and optoelectronics fields.

Key words: polymethyl methacrylate, metal-oxide nanoparticles, biomedical nanotechnologies, optoelectronics.

https://doi.org/10.15407/nnn.21.01.153

References
  1. J. W. Nicholson, Journal of Materials Chemistry, 16, No. 39: 3867 (2006); https://doi.org/10.1039/B611916F
  2. J. M. G. Cowie and V. Arrighi, Polymers: Chemistry and Physics of Modern Materials (CRC Press: 2007); https://doi.org/10.1201/9781420009873
  3. V. Sankar, T. S. Kumar, and K. P. Rao, Trends in Biomaterials and Artificial Organs, 17, No. 2: 24 (2004); https://go.gale.com/ps/i.do?id=GALE%7CA165431689&sid=googleScholar&v=2.1&it=r&
  4. M. Akay, Introduction to Polymer Science and Technology (Bookboon: 2012), p. 269; https://b-ok.asia/ireader/3172353
  5. C. Yang, W. Li, Z. Yang, L. Gu, and Y. Yu, Nano Energy, 18: 12 (2015); https://doi.org/10.1016/j.nanoen.2015.09.008
  6. H. Al-Johani and M. A. Salam, Journal of Colloid and Interface Science, 360, No. 2: 760 (2011); https://doi.org/10.1016/j.jcis.2011.04.097
  7. D. R. Paul and L. M. Robeson, Polymer Nanotechnology: Nanocomposites, 49, No. 15: 3187 (2008); https://doi.org/10.1016/j.polymer.2008.04.017
  8. S. Horikoshi and N. Serpone, Microwaves in Nanoparticle Synthesis (2013), p. 352; https://books.google.iq/books?hl=ar&lr=&id=6D2ZC3qjYCoC&
  9. G. A. Kontos et al., eXPRESS Polymer Letters, 1, No. 12: 781 (2007); https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.624.4116&rep=rep1&type=pdf
  10. S. Nagarajan and K. Arumugam Kuppusamy, India. J. Nanobiotechnol., 11, Article No. 39 (2013); https://doi.org/10.1186/1477-3155-11-39
  11. J. M. Schultz, Polymer Materials Science (New Jersey: Prentice-Hall: 1974), p. 524.
  12. Y. Yagci, S. Yildirim, and A. Onen, Macromol. Chem. Phys., 202, Iss. 4: 527 (2001); https://doi.org/10.1002/1521-3935(20010201)202:4%3C527::AID-MACP527%3E3.0.CO;2-2
  13. A. Shenoy, Thermoplastic Melt Rheology and Processing (CRC Press: 1996), p. 480; https://doi.org/10.1201/9781482295535
  14. R. Reisfeld, M. Gaft, T. Saridarov, G. Panczer, and M. Zelner, Mater. Lett., 45, Nos. 3–4: 154 (2000); https://doi.org/10.1016/S0167-577X(00)00096-3
  15. O. Olatunji, Classification of Natural Polymers, in Natural Polymers (Ed. O. Olatunji) (Cham: Springer: 2016), p. 1; https://doi.org/10.1007/978-3-319-26414-1_1
  16. S. Pilla, Handbook of Bioplastics and Biocomposites Engineering Applications, 81: 620 (2011); https://books.google.iq/books?id=UX-9Z5jx-IsC
  17. M. Dahshan, Introduction to Material Science and Engineering (New York: McGraw Hill: 2002), p. 1.
  18. R. Roy, R. A. Roy, and D. M. Roy, Materials Letters, 4, Nos. 8–9: 323 (1986); https://doi.org/10.1016/0167-577X(86)90063-7
  19. J. Cuppoletti, Nanocomposites and Polymers with Analytical Methods (BoD–Books on Demand: 2011), p. 418.
  20. A. H. Doulabi, K. Mequanint, and H. Mohammadi, Materials, 7, No. 7: 5327 (2014); https://doi.org/10.3390/ma7075327
  21. P. Mariselvi and G. Alagumuthu, Journal Nanoscience Technology, 16 (2015).
  22. G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications (Imperial College Press: 2004), p. 433; https://books.google.iq/books?id=Ez1dYxO_ma8C
  23. R. A. Freitas Jr, Interational Journal of Surgery, 3, No. 4: 243 (2005); http://dx.doi.org/10.1016%2Fj.ijsu.2005.10.007
  24. B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, N. Engl. J. Med., 363, No.25: 2434 (2010); https://www.nejm.org/doi/full/10.1056/nejmra0912273
  25. A. Hashim, Opt. Quant Electron., 53, Article No. 478 (2021); https://doi.org/10.1007/s11082-021-03100-w
  26. H. Ahmed and A. Hashim, Silicon, 14: 4079 (2022); https://doi.org/10.1007/s12633-021-01186-1
  27. H. Ahmed and A. Hashim, Trans. Electr. Electron. Mater., 23: 237 (2022); https://doi.org/10.1007/s42341-021-00340-1
  28. N. Al-Huda Al-Aaraji, A. Hashim, A. Hadi, and H. M. Abduljalil, Silicon, 14: 4699 (2021); https://doi.org/10.1007/s12633-021-01265-3
  29. H. Ahmed and A. Hashim, Silicon, 14: 7025 (2022); https://doi.org/10.1007/s12633-021-01465-x
  30. H. Ahmed and A. Hashim, Silicon, 13: 1509 (2021); https://doi.org/10.1007/s12633-020-00543-w
  31. A. Hazim, A. Hashim, and H. M. Abduljalil, Trans. Electr. Electron. Mater., 21: 48 (2020); https://doi.org/10.1007/s42341-019-00148-0
  32. H. Ahmed, A. Hashim, and H. M. Abduljalil, Ukr. J. Phys., 65, No. 6: 533 (2020); https://doi.org/10.15407/ujpe65.6.533
  33. A. Hashim, H. Abduljalil, and H. Ahmed, Egypt. J. Chem., 62, No. 9: 1659 (2019); doi:10.21608/EJCHEM.2019.7154.1590
  34. A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials, 30: 3894 (2020); https://doi.org/10.1007/s10904-020-01528-3
  35. A. Hazim, A. Hashim, and H. M. Abduljalil, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 4: 983 (2020); https://doi.org/10.15407/nnn.18.04.983
  36. A. Hashim and Z. S. Hamad, Nanosistemi, Nanomateriali, Nanotehnologii, 18, Iss. 4: 969 (2020); https://doi.org/10.15407/nnn.18.04.969
  37. A. Hashim, A. J. Kadham, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 2: 327 (2021); https://doi.org/10.15407/nnn.19.02.327
  38. A. J. K. Algidsawi, A. Hashim, A. Hadi, M. A. Habeeb, Semiconductor Physics, Quantum Electronics & Optoelectronics, 24, No. 4: 472 (2021); https://doi.org/10.15407/spqeo24.04.472
  39. A. Hazim, A. Hashim, and H. M. Abduljalil, Egypt. J. Chem., 64, No. 1: 359 (2021); doi:10.21608/EJCHEM.2019.18513.2144
  40. H. Ahmed and A. Hashim, Silicon, 13: 2639 (2021); https://doi.org/10.1007/s12633-020-00620-0
  41. A. Hazim, H. M. Abduljalil, and A. Hashim, Transactions on Electrical and Electronic Materials, 22: 185 (2021); https://doi.org/10.1007/s42341-020-00224-w
  42. A. Hazim, H. M. Abduljalil, and A. Hashim, Transactions on Electrical and Electronic Materials, 21: 550 (2020); https://doi.org/10.1007/s42341-020-00210-2
  43. H. Ahmed and A. Hashim, Journal of Molecular Modeling, 26: 210 (2020); doi:10.1007/s00894-020-04479-1
  44. H. Ahmed and A. Hashim, Silicon, 14: 4907 (2022); https://doi.org/10.1007/s12633-021-01258-2
  45. A. Hashim, J. Mater. Sci.: Mater. Electron., 32: 2796 (2021); https://doi.org/10.1007/s10854-020-05032-9
  46. H. Ahmed and A. Hashim, International Journal of Scientific & Technology Research, 8, Iss. 11: 1014 (2019)
  47. A. Hashim, A. J. K. Algidsawi, H. Ahmed, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 2: 353 (2021); https://doi.org/10.15407/nnn.19.02.353
  48. A. Hashim, A. J. K. Algidsawi, H. Ahmed, A. Hadi, and M. A. Habeeb, Nanosistemi, Nanomateriali, Nanotehnologii, 19, Iss. 1: 91 (2021); https://doi.org/10.15407/nnn.19.01.091
  49. B. Mohammed, H. Ahmed and A. Hashim, Journal of Physics: Conference Series, 1963: 01205 (2021); doi:10.1088/1742-6596/1963/1/012005
  50. B. Mohammed, H. Ahmed, and A. Hashim, Journal of Physics: Conference Series, 1879: 032110 (2021); doi:10.1088/1742-6596/1879/3/032110
  51. H. Ahmed and A. Hashim, Silicon, 14: 6637 (2022); https://doi.org/10.1007/s12633-021-01449-x
  52. A. Hashim and Z. S. Hamad, Egypt. J. Chem., 63, No. 2: 461 (2020); doi:10.21608/EJCHEM.2019.7264.1593
  53. H. Ahmed and A. Hashim, Silicon, 13: 4331 (2021); https://doi.org/10.1007/s12633-020-00723-8
  54. A. Hashim, Journal of Inorganic and Organometallic Polymers and Materials, 31: 2483 (2021); https://doi.org/10.1007/s10904-020-01846-6
  55. H. Ahmed and A. Hashim, Transactions on Electrical and Electronic Materials, 22: 335 (2021); https://doi.org/10.1007/s42341-020-00244-6
  56. A. Hashim and N. Hamid, Journal of Bionanoscience, 12, No. 6: 788 (2018); doi:10.1166/jbns.2018.1591
  57. A. Hashim and Z. S. Hamad, Journal of Bionanoscience, 12, No. 4: 488 (2018); doi:10.1166/jbns.2018.1551
  58. D. Hassan and A. Hashim, Journal of Bionanoscience, 12, No. 3: 346 (2018): doi:10.1166/jbns.2018.1537
  59. A. Hashim and Z. S. Hamad, Journal of Bionanoscience, 12, No. 4: 504 (2018); doi:10.1166/jbns.2018.1561
  60. B. Abbas and A. Hashim, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 131 (2019); https://doi.org/10.30534/ijeter/2019/06782019
  61. K. H. H. Al-Attiyah, A. Hashim, and S. F. Obaid, Journal of Bionanoscience, 12, No. 2: 200 (2018); doi:10.1166/jbns.2018.1526
  62. D. Hassan and A. Hashim, Journal of Bionanoscience, 12, No. 3: 341 (2018); doi:10.1166/jbns.2018.1533
  63. A. Hashim, I. R. Agool, and K. J. Kadhim, Journal of Bionanoscience, 12, No. 5: 698 (2018); doi:10.1166/jbns.2018.1580
  64. A. Hazim, A. Hashim, and H. M. Abduljalil, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 69 (2019); https://doi.org/10.30534/ijeter/2019/01782019
  65. A. Hazim, H. M. Abduljalil, and A. Hashim, International Journal of Emerging Trends in Engineering Research, 7, No. 8: 104 (2019); https://doi.org/10.30534/ijeter/2019/04782019
  66. A. S. Shareef, F. Lafta R., A. Hadi, and A. Hashim, International Journal of Scientific & Technology Research, 8, Iss. 11: 1041 (2019); https://www.ijstr.org/final-print/nov2019/Water-polyethylene-Glycol-sic-wc-And-ceo2-wcnanofluids-For-Saving-Solar-Energy-.pdf
  67. A. Hadi, A. Hashim, and D. Hassan, Bulletin of Electrical Engineering and Informatics, 9, No. 1: 83 (2020); doi:10.11591/eei.v9i1.1323
  68. A. Kurt, Turkish Journal of Chemistry, 34, No. 1: 67 (2010); https://doi.org/10.3906/kim-0903-29
  69. H. Kaczmarek and H. Chaberska, Applied Surface Science, 252, No. 23: 8185 (2006); https://doi.org/10.1016/j.apsusc.2005.10.037
  70. U. Ali, K. J. B. A. Karim, and N. A. Buang, Polym. Rev., 55, No. 4: 678 (2015); https://doi.org/10.1080/15583724.2015.1031377
  71. D. C. Lee and L. W. Jang, Journal of Applied Polymer Science, 61, No. 7: 1117 (1996); https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7%3C1117::AID-APP7%3E3.0.CO;2-P
  72. K. R. Iler, Solubility, Polym. Colloid Surf. Prop. Biochem. Silica, 38, Nos. 4–5: 209 (2010); https://doi.org/10.1678/rheology.38.209
  73. C. Atsdr and C. Cdc-Info, Toxic Substances Portal., (2010); https://www.atsdr.cdc.gov/ToxProfiles/tp62-c3.pdf
  74. K. Reinhardt and H. Winkler, Ullmann’s Encyclopedia of Industrial Chemistry (2000); https://doi.org/10.1002/14356007.a06_139
  75. C. Sun, H. Li, and L. Chen, Energy & Environmental Science, 5, No. 9: 8475 (2012); https://doi.org/10.1039/C2EE22310D
  76. M. Das et al., Biomaterials, 28, No. 10: 1918 (2007); https://doi.org/10.1016/j.biomaterials.2006.11.036

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement