Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

Ì. A. Grashchenkova, A.-M. V. Tomina, O. I. Burya, S. V. Krasnovyd, A. A. Konchits, and B. D. Shanina
Influence of Carbon Fibres on Properties of Composites Based on Sulfaryl-BSP-7 Copolymer
0139–0151 (2023)

PACS numbers: 61.72.Hh, 72.80.Tm, 76.30.Pk, 76.50.+g, 77.84.Lf, 81.07.Pr, 81.40.Pq

The paper considers the effect of low- (Uglen-9) and high-modulus (Ural-N-24/320) carbon fibres (CF) on the physical and technical characteristics of copolymer BSP-7/CF carbon plastics. All materials, namely, CF, BSP-7, and BSP-7/CF composites, demonstrate electron paramagnetic resonance (EPR) signals with different characteristics. The whole composite and its individual components’ properties, as well as the interaction of the matrix with fillers are studied. The shape of EPR spectrum of CF Ural is controlled by the conduction electrons in dependence on the sample and skin-layer thicknesses for microwaves. The EPR spectra of CF Ural and Uglen are isotropic showing that these are carbonized rather than graphitized fibres. CF Uglen is characterized by a significant specific surface area, which causes a strong (by ≅ 25 times) broadening of the EPR line due to the interaction of CF electron spins with spins of air oxygen. The technology for preparing the composites, which includes magnetic mixing of the components inevitably leads to the ferromagnetic (FM) and superparamagnetic absorption signals within both BSP-7/Ural and BSP-7/Uglen. The magnetic resonance characteristics of composites depend on porosity of the samples, nature and concentration of fillers and FM impurities. The study of the tribological properties of composites shows that addition of Uglen-9 and Ural-N-24/320 fibres leads to a significant positive effect: a decrease in the friction coefficient, linear wear intensity and heat release over the restored surface of the original polymer by 1.6–2.6, 18.9–81.3 and 1.65–2.6 times, respectively.

Key words: carbon fibres, polyarylatesulfone BSP-7, electron paramagnetic and ferromagnetic resonances, intensity of linear wear, friction coefficient.

https://doi.org/10.15407/nnn.21.01.139

References
  1. A. I. Burya, Ye. A. Yeromina, A. A. Konchits, S. V. Krasnovid, and N. I. Tverdostup, Kompozitsionnyye Materialy, 9, No. 2: (2016) (in Russian).
  2. O. I. Burya, Ye. A. Yeriomina, O. B. Lysenko, A. A. Konchits, and A. F. Morozov, Polimerni Kompozyty na Osnovi Termoplastychnykh V’yazhuchykh [Polymer Composites Based on Thermoplastic Binders] (Dn³pro: Srednyak T. K. Press: 2019) (in Ukrainian).
  3. A. I. Meleshko and S. P. Polovnikov, Uglerod, Uglerodnyye Volokna, Uglerodnyye Kompozity [Carbon, Carbon Fibres, Carbon Composites] (Moskva: Sayns–Press: 2007) (in Russian).
  4. W. Ruland, Advanced Materials, 2, No. 11: (1990); https://doi.org/10.1002/adma.19900021104
  5. Xiaosong Huang, Materials, 2, No. 4: (2009); https://doi.org/10.3390/ma2042369
  6. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, L. Spain, and H. A. Goldberg, Graphite Fibers, and Filaments (Springer-Verlag: 2013), p. 382.
  7. S. Lijewski, M. Wencka, S. K. Hoffmann, M. Kempinski, W. Kempinski, and M. Sliwinska-Bartkowiak, Physical Review B, 77: 014304 (2008); https://doi.org/10.1103/PhysRevB.77.014304
  8. G. Feher and A. F. Kip, Physical Review, 98, No. 2: 337 (1955); https://doi.org/10.1103/PhysRev.98.337
  9. F. J. Dyson, Physical Review, 98, No. 2: 349 (1955); https://doi.org/10.1103/PhysRev.98.349
  10. J. H. Pifer and R. Magno, Physical Review B, 3: 663 (1971); https://doi.org/10.1103/PhysRevB.3.663
  11. V. G. Gavriljuk, S. P. Efimenko, Y. E. Smuk, S. U. Smuk, B. D. Shanina, N. P. Baran, and V. M. Maksimenko, Physical Review B, 48: 3224 (1993); https://doi.org/10.1103/PhysRevB.48.3224
  12. O. I. Burya and A.-M. V. Tomina, Journal Functional Materials, 26, No. 3: 525 (2019); https://doi.org/10.15407/fm26.03.525
  13. A. Konchits, Ye. Yeriomina, A.-M. Tomina, O. Lysenko, S. Krasnovyd, and O. Morozov, Advanced Polymer Composites for Use on the Earth and in Space (New York: Jenny Stanford Publishing Pte. Ltd: 2021); https://doi.org/10.1201/9781003131915
  14. A. I. Burya, M. A. Grashchenkova, and R. A. Shetov, Journal Fibre Chemistry, 50, No. 1: 57 (2018); https://doi.org/10.1007/s10692-018-9930-2
  15. À. I. Burya and Y. A. Yeriomina, Journal of Friction and Wear, 37, No. 2: 151 (2016); https://doi.org/10.3103/S1068366616020033

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement