Issues

 / 

2023

 / 

vol. 21 / 

Issue 1

 



Download the full version of the article (in PDF format)

Batool Mohammed, Hind Ahmed, and Ahmed Hashim
Design and Augmentation of the Optical and Electronic Characteristics of BaTiO3-Nanostructures-Doped PVA/PEG for Electronics Nanodevices
0113–0123 (2023)

PACS numbers: 71.15.Mb, 71.20.-b, 78.30.-j, 78.40.-q, 78.67.Sc, 81.07.Pr, 82.35.Np

The present work aims to design of PVA/PEG/BaTiO3 nanostructures and investigating the structural, electronic, optical and thermal properties to use in future optics and electronics applications. The designed nanostructures have individual properties including low cost, lightweight, high corrosion resistance and good optical and electronic characteristics in comparison with other nanostructures. Using DFT with the hybrid functional B3LYP, the characteristics of PVA/PEG/BaTiO3 nanostructures are studied. The electronic characteristics include total energy, energies of HOMO and LUMO, ionization energy, energy gap, electronegativity, electron affinity, electronic softness, electrophilic index, electron density, electrostatic potential, density of states, dipole moment, polarizability, and IR-spectra. The thermal properties include thermal energy, enthalpy, specific heat, and entropy. The optical properties include the UV-spectra. The results indicate that the PVA/PEG/BaTiO3 nanostructures have energy gap equal to 1.705 eV with good optical, thermal and electronic properties, which make it be useful in the electronics and optics fields.

Key words: BaTiO3, DFT, energy gap, optical properties, polymer, electronics applications.

https://doi.org/10.15407/nnn.21.01.113

References
  1. Q. M. Al-Bataineh, A. A. Ahmad, A. M. Alsaad, and A. D. Telfah, Heliyon, 7: 1 (2021); https://doi.org/10.1016/j.heliyon.2021.e05952
  2. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press: 2001).
  3. Y. Duan, G. Tang, C. Chen, T. Lu, and Z. Wu, Physical Review B, 85, No. 5: 054108 (2012); https://doi.org/10.1103/PhysRevB.85.054108
  4. M. Yanan, C. Huanming, F. Pan, Z. Chen, Z. Ma, X. Lin, F. Zheng, and X. Ma, Ceramics Int., 45: 6303 (2019); https://doi.org/10.1016/j.ceramint.2018.12.113
  5. A. A. Alhazime, J. Inorg. Organomet. Polym., 30: 4459 (2020); https://doi.org/10.1007/s10904-020-01577-8
  6. W. Jilani, A. Jlali, and H. Guermazi, Opt. Quant. Electron., 53: 545 (2021); https://doi.org/10.1007/s11082-021-03200-7
  7. N. Bano, I. Hussain, A. M. EL-Naggar, and A. A. Albassam, Appl. Phys. A, 125: 1 (2019); https://doi.org/10.1007/s00339-019-2518-8
  8. H. Ahmed and A. Hashim, J. Mol. Model., 26: 210 (2020); https://doi.org/10.1007/s00894-020-04479-1
  9. A. Hazim, A. Hashim, and H. M. Abduljalil, Trans. Electr. Electron. Mater., 21: 48 (2019); https://doi.org/10.1007/s42341-019-00148-0
  10. H. Ahmed and A. Hashim, Trans. Electr. Electron. Mater., 23: 237 (2021); https://doi.org/10.1007/s42341-021-00340-1
  11. W. Jilani, A. Jlali, and H. Guermazi, Opt. Quant. Electron., 53: 545 (2021); https://doi.org/10.1007/s11082-021-03200-7
  12. H. Ahmed and A. Hashim, Silicon, 13: 1509 (2021); https://doi.org/10.1007/s12633-020-00543-w
  13. A. Hazim, H. M. Abduljalil, and A. Hashim, Trans. Electr. Electron. Mater., 21: 550 (2020); https://doi.org/10.1007/s42341-020-00210-2
  14. H. Ahmed and A. Hashim, Silicon, 14: 4907 (2022); https://doi.org/10.1007/s12633-021-01258-2
  15. H. Ahmed and A. Hashim, Silicon, 13: 2639 (2020); https://doi.org/10.1007/s12633-020-00620-0
  16. A. Hazim, H. M. Abduljalil, and A. Hashim, Trans. Electr. Electron. Mater., 22: 185 (2020); https://doi.org/10.1007/s42341-020-00224-w
  17. S. S. Alharthi, A. Alzahrani, M. A. N. Razvi et al., J. Inorg. Organomet. Polym., 30: 3878 (2020); https://doi.org/10.1007/s10904-020-01519-4
  18. S. Kumar, S. Baruah, and A. Puzari, Polym. Bull., 77: 441 (2020); https://doi.org/10.1007/s00289-019-02760-9
  19. J. Mohammed, T. T. Carol T., H. Y. Hafeez, D. Basandrai, G. R. Bhadu, S. K. Godara, S. B. Narang, and A. K. Srivastava, J. Mater. Sci.: Mater. Electron., 30: 4026 (2019); https://doi.org/10.1007/s10854-019-00690-w
  20. M. J. Frisch and F. R. Clemente, Gaussian 09, Revision A. 01 (M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zhe).
  21. H. M. Kampen, H. Mendez, and D. R. T. Zahn, Technische Universitat Chemnitz, Institut fur Physik (Germany) (1999); https://www.tu-chemnitz.de/physik/HLPH/publications/p_src/438.pdf
  22. K. Sadasivam and R. Kumaresan, Computational and Theoretical Chemistry, 963, No. 1: 227 (2011)./li>
  23. O. A. Kolawole and S. Banjo, Theoretical Studies of Anti-Corrosion Properties of Triphenylimidazole Derivatives in Corrosion Inhibition of Carbon Steel in Acidic Media via DFT Approach, 10, No. 1: 136 (2018).
  24. P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics (Oxford University Press: 2011); http://sutlib2.sut.ac.th/sut_contents/H96900.pdf
  25. V. Subramanian, Quantum Chemical Descriptors in Computational Medicinal Chemistry for Chemoinformatics, Central Leather Research Institute, Chemical Laboratory (2005); https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Subramanian%2C+V.+%282005%29.+Quantum+Chemical+Descriptors+in+Computational+Medicinal+Chemistry+for+Chemoinformatics.+Central+Leather+Research+Institute%2C+Chemical+Laboratory%2C+0-0000&btnG=
  26. L. Shenghua, Y. He, and J. Yuansheng, Inter. J. of Molecul. Sci., 5, No. 1: 13 (2004); https://doi.org/10.3390/i5010013
  27. Ademir J. Camargo, Kathia M. Honorio, Ricardo Mercadante, Fabio A. Molfetta, Claudio N. Alves, and Alberico B. F. da Silva, Journal of the Brazilian Chemical Society, 14, No. 5: 809 (2003); https://doi.org/10.1590/S0103-50532003000500017
  28. P. Udhayakala and T. V. Rajendiran, Journal of Chemical, Biological and Physical Sciences, 2, No. 1: 172 (2011); https://jcbsc.org/api/public/getFileOld/a/47
  29. M. Salazar-Villanueva, A. B. Hernandez, E. C. Anota, J. R. Mora, J. A. Ascencio, and A. M. Cervantes, Molecular Simulation, 39, No. 7: 545 (2013); https://doi.org/10.1080/08927022.2012.754098
  30. A. N. Chibisov, Molecular Physics, 113, No. 21: 3291 (2015); https://doi.org/10.1080/00268976.2015.1017544
  31. P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (Elsevier Inc.: 2013).
  32. K. S. Jeong, C. Chang, E. Sedlmayr, and D. Sulzle, Journal of Physics B: Atomic, Molecular and Optical Physics, 33, No. 17: 3417 (2000); doi:10.1088/0953-4075/33/17/319

Creative Commons License
This article is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License
©2003—2023 NANOSISTEMI, NANOMATERIALI, NANOTEHNOLOGII G. V. Kurdyumov Institute for Metal Physics of the National Academy of Sciences of Ukraine.

E-mail: tatar@imp.kiev.ua Phones and address of the editorial office About the collection User agreement